
[�OC]

1 Introduction

1.1 Purpose of this document

The purpose of this document is to provide initial
program��ng information for the HER��S Paige
developers. Comments are welcome, as are useful example
code sub��ssions. Questions and answers from HER��S
Paige developers may be used in subsequent editions of
the manual.

1.2 How to use this manual

The HER��S Paige technology is quite extensive, so we
recommend that you do not s��ply dive into the ��ddle
of this manual and start ��plementing complex features.

Our advice is to ��plement this sof��are by follo��ng
these gradient steps:

1. Follow the information in chapter 2, "Up and
Running". During this phase, ignore all other
information in the manual.

2. Follow chapter 3, "Beyond the Defaults", which
discusses ��plementation of additional, common
features above and beyond the bare ��n��um covered
in �� above.

3. If you need to ��plement virtual memory, do that by
follo��ng chapter 4, "Virtual Memory".

4. ��plement all remaining s��ple functionality not
covered in �� or #2 above, such as text formatting
(fonts and styles), paragraph formatting (indents
and justification) and possibly tab settings and
color. See chapter 8, "Style Basics".

5. Depending on what you ��sh to accomplish ��th
HER��S Paige, find section(s) that deal ��th your
particular requirements — we have tried to break
down this manual into the most likely application
requirements.

You should also consult the index to locate the
topic(s) of interest quickly.

Generally, we have placed the parts of HER��S Paige
that most users ��ll want and that are the most
straight forward in the front. As you move to the back

of the manual, the functionality ��ll become more
complex.

CAU��ON

It is ��portant to remember that no user ��ll need the
entire functionality. If you are contemplating a
complex feature, or one in which you ��ll need detailed
kno��edge of HER��S Paige or working in the chapters
toward the rear of the manual, please contact HER��S
Paige Tech Support via electronic mail for an
evaluation and suggestions on how you can easily
accomplish your goal. We can often suggest the easiest
way to do something if we are consulted before you are
buried in buggy code. Also kno��ng what you are doing
and why you are doing it "that way" helps us to build
better features.

1.3 ��plementation ��ps & Hints

If you are a Word Solution Engine customer: the
HER��S Paige technology is very different than
DataPak's Word Solution Engine. We therefore
recommend strongly to "forget" all you know about
Word Solution in order to understand the
��plementation of HER��S Paige.
Use the index to find small items, and Summary of
Functions for quick-reference to function syntax.
Consult the demo progra�. The HER��S Paige package
you received includes all the source files for the
"demo" which contains a wealth of information and
examples. If you think something does not work
correctly, before reporting a bug or other��se
reach an ��passe, consult that area of the demo
against the way you have ��plemented the code. One
of the first questions we ��ll ask when you contact
our Technical Support is, "Does it work correctly
in the demo?"

NO�� (��NDO�� USERS)

If you are using the HER��S Paige API directly, consult
the source files in the Control directory (the "demo"
s��ply uses the HER��S Paige Custom Control; the Custom
Control source files show how to access the API).

NO��

You may contact our Technical Support service if the
above suggestions fail to help. However, we do not
accept any telephone support questions whatsoever. All
questions must be sub��tted by email; we ��ll a��ays
attempt to handle your questions as quickly and as
thoroughly as possible. You can email your support
questions to .

1.4 Certain Conventions

Since HER��S Paige is designed to be a multi-platfor�,
multi-application processing editing library, we have
had to make certain conventions in how the functions
are described.

"FAR" Pointers

Certain platforms require pointers which are outside
the current segment to be designated as far pointers,
such as ��ndows. Other platforms, such as the Macintosh
do not require this. For the Macintosh, PG_FAR has been
declared as nothing and these differences can be
ignored.

pascal keyword

The pascal keyword has been left out of the function
definitions in this document; the actual header file(s)
��ll contain that keyword. All external HER��S Paige
functions are declared using the Pascal calling
conventions.

Redefinition of types

To maintain compatibility across all platforms, certain
new types have been declared as follows:

Unicode Version

HER��S Paige TypeTypedef'd From

pg_short_t unsigned short

pg_char unsigned short

pg_char_ptr pointer to pg_char

HER��S Paige TypeTypedef'd From

pg_bits8 unsigned char

pg_bits8_ptr pointer to pg_bits8
pg_boolean short

pg_error short (for error codes)
memory_ref unsigned long

PG��R pg_char_ptr

Non-Unicode Version

HER��S Paige TypeTypedef'd From

pg_short_t unsigned short

pg_char unsigned char

pg_char_ptr pointer to pg_char
pg_bits8 (same as pg_char)
pg_bits8_ptr (same as pg_char_ptr)
pg_boolean short

pg_error short (for error codes)
memory_ref unsigned long

PG��R pg_char_ptr

NULL Reference

Frequent use of the term ��NULL exists throughout this
manual. This is a HER��S Paige macro that s��ply
expands to (value of) zero. It is used for indicating a
"null" for a HER��S Paige memory reference.

Machine Definitions

A single header file, cpudefs.h controls basic
definitions for the platform in which the source files
are intended.

1.5 Debug Mode

��ndows users can ignore the "debug mode" libraries
described belo�. This method of debugging applies only
to Macintosh versions.

HER��S Paige is compiled in both "debug" and "non
debug" modes. Two sets of libraries are provided for
this purpose.

When you use the "debug" libraries, you must also
include pgdebug.c in your project. This lets you break
into a source-level debugger to learn why HER��S Paige
is raising an exception. To use the HER��S Paige
debugger, open pgdebug.c and place a break point at the
suggested spot (source comments indicate the spot).

If you break into the debugger, the message parameter
is a pascal string.

Source code users: Debug mode is controlled by a single
#define in CPUDefs.h, #define PG_DEBUG.

Debug mode slows the performance down substantially. It
is recommended to use HER��S Paige in debug mode during
your development, but to turn it off for your final
release, if for no other reason than increased
performance.

2 Up and Running

2.1 HER��S Paige Custom Control

If you are using HER��S Paige for a new application, or
integrating HER��S Paige for the first t��e, it would
be ��se to consider ��plementing the HER��S Paige
Custom Control. Documentation for this subset of HER��S
Paige is contained in a separate, smaller manual.

The Custom Control can potentially save you substantial
amounts of development t��e, particularly to get "up
and running" quickly. To make this decision, consider
the follo��ng:

Using the Control ��mediately el���nates the need
to know very little — or any — of the detailed
information in this Programmer's Guide.
Most of the samples we provide use the Control (not
the direct API).
You can still call the HER��S Paige API directly,
when and if you need to.

If you decide to use the HER��S Paige Custom Control,
you do not need to read this manual any further!
��mediately proceed to the HER��S Paige Control manual;
use this (larger) Programmer's Guide only when/if you
need to call the API directly.

2.2 Bare necessities

This section provides the bare ��n��um code to get up
and running ��th HER��S Paige. This ��n��um
functionality assumes one single default font and
style, a single rectangle for display and word
wrapping, no scrolling, nothing fancy.

CAU��ON

Be sure to consult the release note and individual
installation instructions included in each release.
HER��S Paige installation ��ll change ��th versions and
even inter�� releases. This makes checking the latest
notes on the disk critical.

2.3 Libraries & Headers

Regardless of whether you are a source code user or an
object-code-only user, all source files in your
application that call HER��S Paige functions must
include, at a ��n��um:

��nclude "Paige.h"

As for the HER��S Paige sof��are itself, the ��n��um
configuration is given belo�.

��ndows

The ��ndows version provides several library options;
choose the appropriate libraries based upon the
information provided belo�.

NO��

Most libraries include the option be��een DLL(s) and
static libraries.

��ndows 3.1

Multilingual (��ll handle double-byte codes such as
Kanji)

(DLL Version Only)

PG��16.DLL (�ain HER��S Paige)
PG��C��6.DLL (Custom control)

Non-Multilingual (no requirements for double-byte
codes)

DLL Libraries

^^^^^^^^^^^^^
PAIGE.DLL (�ain HER��S Paige)
PGCN��.DLL (Custom control)

Static Libraries

^^^^^^^^^^^^^^^^
PG16LIB.LIB (�ain HER��S Paige)
PGC��16.LIB (Custom control)

��ndows NT (XP, 10, 11)

Unicode

DLL Libraries
^^^^^^^^^^^^^
PGUNICOD.DLL (�ain HER��S Paige)
PGUNIC��.DLL (Custom control)

Static Libraries
^^^^^^^^^^^^^^^^
PGUNILIB.LIB (�ain HER��S Paige)
PGUNC��B.LIB (Custom control)

Non-Unicode

DLL Libraries
^^^^^^^^^^^^^
Paige32.DLL (Dyna��c Linked Library for main (HER��S
Paige)
Pgentl32.DLL (Dyna��c Linked Library for custom
control)

Static Libraries
^^^^^^^^^^^^^^^^
PGLIB32.LIB (�ain HER��S Paige)
PGC��LIB.LIB (Custom control)

Multilingual

All versions for ��ndows 95 and NT are multilingual-
compatible.

Borland Libraries (DLL libraries only)

Single Thread
^^^^^^^^^^^^^
PAIGE32B.DLL (�ain HER��S Paige)
PGC��32B.DLL (Custom Control)

Multithread
^^^^^^^^^^^
PG32BM�.DLL (�ain HER��S Paige)
PGC32BM�.DLL (Custom control)

Program Linking ��th DLL Libraries

When using any of the DLL libraries, add the file ��th
the same name plus the .LIB extension. For example, if
using PAIGE.DLL for the runt��e library, add PAIGE.LIB
to your project.

Macintosh

Macintosh Object Code Users

If you are using Think C or Metrowerks CodeWarrior, add
all libraries to your project from the "Debug
Libraries" OR "Runt��e Libraries" folder (not both).
Running in debug mode is suggested for general
development, while non-debug is suggested for
performance testing (for speed) and/or for final
release of your product. Debug mode ��ll reduce the
program's performance substantially.

If you are using Metrowerks CodeWarrior, you must be
sure to remove all previous versions of header files.
Compiler complaints may be the result of CodeWarrior
finding the incorrect header or object file.

The source code package includes "make" files for
building HER��S Paige libraries ��th ��VC��. If you
need to create your own project file to build an HER��S
Paige library, the follo��ng information may prove
useful:

1. Include .C files from the pgsource directory. None
of them should be excluded.

2. Include pgdebug from the pgdebug directory. (NO��:
This file compiles to zero bytes of code unless

#define PG_DEBUG is present in CPUDEFS.H [see
“Compiler Options" belo�].)

3. Include the follo��ng .C files from pgplatfo
regardless of the target platform: pgio.c,
pgmemmgr.c, pgosutl.c, pgscrap.c.

4. Depending upon your target platfor�, include the
follo��ng files from pgplatfo: pg��n.c and pgdll.c
(the latter if compiling as a DLL) for ��ndows, and
pgmac.c and pgmacput.c for Macintosh.

5. For ��ndows 3.1 you may be asked to include a .DEF
file. ��th ��VC 1.5x you can ask to generate a
default .DEF, in which case you should choose to do
so and rebuild.

6. The HER��S Paige source code is not a��ays friendly
to certain C�� compilers due to void* type casting
(or lack thereof). In most cases, you can work
around this problem by compiling your project as
straight C ��th an output for static or
dyna��cally-linked library, then include that
library in your main project. For Metrowerks
CodeWarrior (�acintosh) you can work around this
problem by turning OFF the option, "Invoke C��
Compiler".

7. To compile for Unicode, define UNICODE and
_UNICODE in the preprocessor option(s). Do not
define these constants in the header file(s) or you
won't necessary achieve an accurate Unicode
library.

8. If you compile for ��ndows 3.1-Multilingual, you
must also include the follo��ng ��ndows library
(for National Language Support): OLENLS.LIB.

Compiler Options

All options for different target platforms and library
types are controlled in CPUDEFS.H. Generally, only the
first several lines in CPUDEFS.H need to be changed to
compile for different platforms. The follo��ng
guidelines should be followed:

Compiling for ��ndows 3.1

#define ��N16_COMPILE (should be ON)
#define ��N32_COMPILE (should be OFF)

Compiling for ��ndows 3.1-Multilingual
(double-byte)

In addition to above:

#define ��N��U���LINGUAL �� should be added to the
file or preprocessor

Compiling for ��ndows NT (7, 8, 10, 11)

#define ��N16_COMPILE �� should be OFF
#define ��N32_COMPILE �� should be ON

NO��

There are other ��scellaneous options that may ��ply a
requirement to be enabled (by their names) such as
��N95_COMPILE. Do not turn these on, regardless of
platform! Enable only ��N32_COMPILE for all 32-bit
versions.

You do not need to define anything other than
��N32_COMPILE to support double-byte multilingual
editing for ��ndows NT and ��ndows 95; that support is
generated automatically.

For Unicode, you must define UNICODE and _UNICODE in
your preprocessor options of the compiler. (If no
preprocessor option, #define UNICODE somewhere in your
sources or headers to allow all system header files to
recognize the Unicode option).

DLL versus Static Library (all platforms)

To compile as a DLL:

#define CREA�����_DLL �� should be ON

If compiling as a static library or non-DLL:

#define CREA�����_DLL �� should be OFF

Debug versus Runt��e

HER��S Paige has a built-in debugger which can be
enabled by compiling ��th the follo��ng:

#define PG_DEBUG �� HER��S Paige debugger compiles
if ON

When this is defined, all HER��S Paige exceptions or
debugging errors jump into the code in pgdebug.c.

NO��

Compiling ��th PG_DEBUG ��ll dramatically reduce the
performance!

Special Resource (�acintosh only)

A special resource has been provided on your HER��S
Paige disc which the Macintosh-specific code ��thin
HER��S Paige uses to initialise default character
values (such as arrow keys, backspace characters,
invisible symbols, etc.). You may copy and paste this
resource into your application's resource and you may
modify its contents if you want different defaults.

This resource is not required to use HER��S Paige
successfully. If it is ��ssing, initialisation s��ply
sets a hard-coded set of defaults.

See also Changing Globals.

2.4 Sof��are Startup

Some place early in your application you need to
initialise the HER��S Paige sof��are; the recommended
place to do so is after all other initialisations have
been performed for the main menu, Mac Toolbox, etc. To
initialise, you need to reserve a couple blocks of
memory that HER��S Paige can use to store certain

global variables (HER��S Paige does not use any globals
and therefore requires you to provide areas it can use
to store required global structures).

To initialise HER��S Paige you must call ��o functions
in the order given:

��nclude "Paige.h"
(void) pgMe��tartup (pg��globals_ptr me��globals,
long max��emory);
(void) pgInit (pg_globals_ptr globals,
pg��globals_ptr me��globals);

Calling pgMe��tartup initialises HER��S Paige's
allocation manager. This call must be made first before
pgInit. The me��globals parameter must be a pointer to
an area of memory which you provide. The usual (and
easiest) method of doing this is to define a global
variable that ��ll not relocate or unload during the
execution of your progra�, such as the follo��ng:

pg��globals memrsrv; �� ���somewhere that ��ll
NOT unload

You do not need to initialise this structure to
anything—pgMe��tartup initialises this structure
appropriately.

max��emory should contain the max��um amount of memory
HER��S Paige is allowed to use before purging memory
allocations. If you want HER��S Paige to have access to
all available memory (�hich is stro�g�y reco��e�ded),
pass 0 for max��emory.

For example, suppose you only wanted to use 200 kB of
memory for all HER��S Paige documents, combined. In
this case, you would pass 200000 to pgInit. If you
don't care, or want it to use all memory available, you
would pass 0.

After pgMe��tartup, call pgInit, which initialises
every other part of HER��S Paige.

globals is a pointer to an area of memory which you
provide. The usual (and easiest) method of doing this
is to define a global variable that ��ll not relocate

or unload during the execution of your progra�, such as
the follo��ng:

pg_globals paigersrv; �� ��� somewhere that
��ll NOT unload

The structure pg_globals is defined in paige.h (and
shown in section 3.8, Changing Globals). You do not
need to initialise this structure to anything—HER��S
Paige ��ll initialise the globals structure as
required. It is only necessary that you provide the
space for this structure and pass a pointer to it in
pgInit.

me��globals parameter in pgInit must be a pointer to
the same structure passed to pgMe��tartup.

��C NO��

The best place to initialise HER��S Paige in the
constructor of the C��nApp derived class. Also the best
place to put the HER��S Paige globals and memory
globals is in the C��nApp derived class.

EXAMPLE

(.H)

class My��nApp : public C��nApp
{

���

public:
pg��globals m��emoryGlobals;
pg_globals ��Globals;
���

}

(.CPP)

My��nApp��My��nApp()
{

pgMe��tartup(�m��emoryGlobals, 0);
pgInit(���Globals, &m��emoryGlobals);

���
}

��CH NO��

pgInit crashes

It is possible to crash in pgInit. This is very rare
however. Here are the main possibilities:

A wrong library is linked in, i.e. version
��smatch. (�his includes all "updates" from
compiler vendors who have changed the format of
their object code libraries).
It is called ��thout calling Me��tartup.
You are out of memory. HER��S Paige can require up
to 60 kB to build itself and get ready to accept
text.
��ndows 3.1 platform only: you are building a DLL
��th a memory model ��smatch. The PAIGE DLL was
built for large modal; try building your DLL the
same.

2.5 HER��S Paige Shutdown

For applications that require a shutdown of all
allocations it has created, call the follo��ng
functions, in the order shown, before ter��nating your
application:

(void) pgShutdown (pg_globals_ptr globals);
(void) pgMe��hutdown (pg��globals_ptr me��globals);

globals and me��globals parameters must be pointers to
the same structures given to pgInit and pgMe��tartup,
respectively. After pgShutdown, you must not call any
HER��S Paige functions (except for pgInit). After
pgMe��hutdown, all allocations placed in globals are
de-allocated.

CAU��ON

All pg_refs and all memory references allocated
anywhere by HER��S Paige become invalid after

pgShutdown, so make sure this is the very last HER��S
Paige function you call.

CAU��ON (��NDO�� USERS)

Be sure to call both pgShutdown and pgMe��hutdown, in
that order, before EX��, or you ��ll have memory leaks
and resources that are never released.

NO��S

pgShutdown and pgMe��hutdown actually dispose
every memory allocation made by HER��S Paige since
pgMe��tartup; you therefore don't really need to
dispose any pg_refs, shape_refs or other HER��S
Paige allocations.

You must not call either shutdown function if you
are using the HER��S Paige Control.

For Macintosh applications, the shutdown procedure
is completely unnecessary if you ��ll be doing an
Exi��oShell using the app version. Mac developers
working ��th code resource libraries ��ll still
need to call pgShutdown and pgMe��hutdown.

For ��crosoft Foundation Class applications, the
appropriate method to shut down HER��S Paige is to
override CxxAppxExitInstance() and call
��pgShutdown and ��pgMe��hutdown.

The best place to shutdown HER��S Paige is in the
destructor of the C��nApp derived class. Example:

(.CPP)
My��nApp��~My��nApp()
{

���
pgShutdown(���Globals);
pgMe��hutdown(���emoryGlobals);

}

2.6 Creating an HER��S Paige Object

By "HER��S Paige object" is meant a single item that
can edit, display and other��se manipulate a block of
text, large or small.

Calling pgNew, belo�, returns a reference of type
pg_ref. This pg_ref can then be passed to all the
other functions given in this manual.

(pg_ref) pgNew (pg_globals_ptr globals, generic_var
def_device, shape_ref vis_area, shape_ref page_area,
shape_ref exclude_area, long attributes);

The above function returns a new pg_ref; the pg_ref
can then be passed to other functions to insert text
and edit text.

globals parameter must be a pointer to the same
pg_globals structure you passed to pgInit at startup
t��e.

Attributes are described in sections 2.8, Attribute
Settings, and 3.1, Changing Attributes, but can be set
here as well.

def_device parameter defines what graphics port this
HER��S Paige object should draw to by default; what is
actually passed to def_device can slightly vary be��een
platforms as follows:

Macintosh & PowerPC

If def_device is NULL then current GrafPort is used as
the default device; if def_device is non-NULL and not
"-1" it is assumed to be a GrafPtr and that port is
used for subsequent dra��ng.

��ndows (PC)

If def_device is 0L then the current ��ndow of focus
is used as the default ��ndow where dra��ng ��ll occur
(e.g., GetFocus is used to deter��ne the ��ndo�); if
def_device is non-NULL and not -1 it is assumed to be
type HWND and that ��ndow is used for subsequent
dra��ng.

This HWND in the def_device �s �ot a Device Context.

Essentially, the dev_device should be the ��ndow (or
child ��ndo�) that is receiving the message to create
the HER��S Paige object, e.g. W��CREA��.

CAU��ON

If you pass M���NULL to def_device, HER��S Paige ��ll
obtain the ��ndow of current focus. You should only use
this method if your document ��ndow is known to be the
��ndow of focus, other��se passing M���NULL can result
in a crash.

��crosoft Foundation Classes (��C)

The best place to put pgNe�() is in the OnCreate()
member of the CView derived class. It is ��portant to
call the CView��OnCreate() before calling pgNe�().
Examples follow:

(.H)
class MyView : public CView
{
���
public:

pg_ref ��Paige;
���

}

(.CPP)
int MyView��OnCreate(LPCREA����RUCT lpCreateStruct)
{

pg��globals_ptr memory_globals =
((�y��nApp*)AfxGetApp()) �� m��emoryGlobals;

int return_value = 0;
CRect client_rect;
rectangle client_paige_rect;
if(CView��OnCreate(lpCreateStruct �� -1)

return -1;
ASSER�(��hWnd);
ASSER�(is��ndo�(��h��nd));

�� Non-HER��S Paige initialisation here!

GetClientRect(�client_rect);
Rec��oRectangle(�client_rect, &client_paige_rect);

shape_ref ��ndow =
pgRec��oShape(AfxGe��emoryGlobals(), &rect);

PG��RY(AfxGetApp() �� m��emoryGlobals �� See Chapter
19 of the HER��S Paige manual.
{

��Paige = pgNe�(AfxGetApp() �� ��Globals,
(generic_var)(LPVOID)��hWnd, ��ndo�, ��ndo�,
M���NULL, 0);
};

PG_CATCH
{

return_value = -1;
};

PG_ENDTRY;

pgDisposeShape(��ndo�);

return return_value;
}

All Platforms

If def_device is -1 then no device is assumed (�hich
��plies you ��ll not be dra��ng anything and/or ��ll
specify a dra��ng port later). If you need to pass -1
for the def_device parameter, you can use the follo��ng
predefined macro:

#define USE_NO_DEVICE (generic_var) -1 �� pgnew is
��th no device

If def_device is neither -1 nor a null pointer it is
assumed to be an HER��S Paige dra��ng port to be used
for the default (see graf_device, pgSetDefaultDevice).

For "Up and Running", pass a null pointer for
def_device (for Macintosh and PowerPC) or the HWND
associated ��th the current message for ��ndows-PC.

Parameters vis_area, page_area and exclude_area define
the literal shapes for which text ��ll display, wrap
and jump over, respectively. Each of these define how
the text ��ll appear ��thin the HER��S Paige object as
follows:

vis_area defines the visible area that shows text, or
the "hole" in which it displays. This area may be
physically smaller than the document containing the
text; any physical area of the screen that is outside
the boundary of vis_area ��ll c��p (�ask) the text from
vie�.

page_area defines the container in which text ��ll wrap
and flo�. It is referred to as the page area since it
literally defines the page size of your document. The
��dth of page_area also defines the boundaries for
which text must wrap. The page_area can be any size,
larger or smaller than vis_area.

exclude_area is an optional shape which defines an area
or areas in which text must avoid. In other words, if a
line of text were to intersect any part of the
exclude_area, it must jump over that area in some way
to avoid it.

For pgNew, you can pass M���NULL for exclude_area, but
you must pass a valid shape_ref for vis_area and
page_area.

See section 2.7, Up and Running Shapes how to create a
shape_ref.

attributes can contain different bit settings which
define specific characteristics for the HER��S Paige
object. For the purpose of getting "Up and Running"
quickly, pass 0 for this parameter (or see section 3.1,
Changing Attributes).

The initial font and text format used by the pg_ref
returned from pgNew ��ll be taken from pg_globals. To
change what font, style or paragraph format that a new
pg_ref assumes, set the appropriate information in
pg_globals after calling pgNew.

M���NULL Definition

The value M���NULL is a defined value in HER��S Paige
header files that you should use to ��ply a "null"
shape_ref or memory_ref—see "The Allocation Manager".

Error checking pgNew

HER��S Paige provides excellent error checking for
pgNew. See "Exception Handling".

2.7 Up and Running: Shapes

To avoid a lengthy discussion at this t��e regarding
HER��S Paige shapes, we ��ll assume at this t��e you
��sh to display text ��thin a s��ple rectangle (as
opposed to some other non-rectangular shape or multiple
"container" rectangles).

Creating a shape using rectangle

The easiest way to create a new shape is to use the
follo��ng function:

(shape_ref) pgRec��oShape (pg��globals_ptr
me��globals, rectangle_ptr rect);

This returns a new shape_ref (�hich can be passed to
one of the area parameters in pgNew). The globals

parameter must be a pointer to the same structure given
in pgInit and pgNew.

The rect parameter is a pointer to a structure
consisting of a top-left and bottom-right coördinate
that encloses a rectangle. The coördinate and rectangle
definitions are as follows:

typedef struct

{
long v; �� vertical position
long h; �� horizontal position

}
co_ordinate;

typedef struct
{

co_ordinate top_left; �� Top-left
of rect

co_ordinate bot_right; �� Bottom-
right of rect
}
rectangle, *rectangle_ptr;

Hence, if you set a rectangle to the desired d��ensions
and pass a pointer to that rectangle in pgRec��oShape,
a new memory reference is returned which contains a
shape of that rectangle.

NO��

The reason pgNew requires a shape_ref instead of
rectangles is that an HER��S Paige object can have non-
rectangular shapes for any of its three areas.

For further information regarding shapes, particularly
non-rectangular shapes, see "All About Shapes".

Disposing a Shape

The pgNew function makes a copy of the shape you pass
to its parameters. Once you have received a new pg_ref
you can dispose the shape. To do so, call:

void pgDisposeShape (shape_ref the_shape);

Rect to Rectangle

Two utilities exist that make it easier to create
HER��S Paige rectangles:

��nclude "pgTraps.h"
(void) Rec��oRectangle (Rect PG_FAR *r,
rectangle_ptr pg_rect);
(void) RectantleToRect (rectangle_ptr pg_rect,
co_ordinate_ptr offset, Rect PG_FAR *r);

Rec��oRectangle converts Rect r to rectangle pg_rect.
The pg_rect parameter must be a pointer to a rectangle
variable you have declared in your code.

RectangleToRect converts pg_rect to r. Also, if offset
is non-null, the resulting Rect is offset by the
amounts of the co_ordinate (for example, if offset.h
and offset.v were 10, -5 the resulting Mac Rect would
be the values in pg_rect ��th left and right amounts
offset by 10 and top and bottom amounts offset by -5.

NO�� (��ndows)

Type Rect is identical to type RECT, and both can be
used interchangeably.

NO�� (�acintosh)

Since a Mac Rect has a ±32K l���t for all four sides,
HER��S Paige rectangle sides larger than 32K ��ll be
intentionally truncated to about 30K.

About ��ndows, Graphic Ports and Origins

Although HER��S Paige is designed to be platform-
independent, is does assume a target graphics device
that all dra��ng is transferred to.

When a pg_ref is created, the default target device is
set to whatever is appropriate for the running
platfor�. For Macintosh, the default device is the
current GrafPort set when pgNew is called.

NO�� (�ord Solution Engine for Macintosh)

Unlike ��E, HER��S Paige "remembers" what port it
should draw to and all subsequent dra��ng ��ll occur in
that port unless you specifically override it.

For the purpose of getting "Up and Running", just make
sure you create your ��ndow first and have it set as
the current port before calling pgNew. In subsequent
sections, we ��ll provide different ways to change the
target port.

Origins

HER��S Paige does not care what a ��ndow's origin is
set to (top-left co_ordinate values). HER��S Paige only
cares about the area parameters you provide for pgNew;
remember, HER��S Paige doesn't really know what a
��ndow is and doesn't know anything about origins.
HER��S Paige s��ply and only follows the coördinates
you have set for vis_area, page_area and exclude_area.
If your page_area shape passed to pgNew, for instance,
had a top-left of -10000,-9999, the first character of
the first line ��ll be drawn at that coördinate
location regardless of where the top-left of your
��ndow ��ght physically exist. In other words, HER��S
Paige coördinates are a��ays relative to the associated
��ndow's coördinates.

2.8 Attribute Settings

As mentioned earlier, pgNew ��ll accept certain
characteristics defined in the "attributes" parameter.
The current version supports the follo��ng:

#define NO��RAP_B��
0x00000001 �� Wraps only on <CR> or <LF>
#define NO_LF_B��
0x00000002 �� Do not add font
#define NO_DEFAU���LEADING 0x00000004 ��

Do not add font leading
#define NO_ED���B��
0x00000008 �� No editing (display only)
#define EX��RNAL_SCROLL_B�� 0x00000010 ��
App controls scrolling
#define COUN��LINES_B�� 0x00000020
�� Keep track of line, para count
#define NO_HIDDEN���X��B�� 0x00000040 ��
Do not display hidden text
#define SHO��INVIS_CHAR_B�� 0x00000080 ��
Show control characters
#define ��AR��QUO��S_B�� 0x00000800
�� Do "smart quotes"
#define NO_��AR��CU��B�� 0x00001000
�� Do not do "rt cut/paste"
#define NO_SO���HYPHEN_B�� 0x00002000 ��
Ignore soft hyphens
#define NO_DUAL_CAR���B�� 0x00004000

�� Do not show dual carets
#define SCALE_VIS_B��
0x00008000 �� Scale vis_area when scaling
#define B��MAP_ERASE_B�� 0x00010000
�� Erase page(s) ��th bi��ap dra��ng
#define TABS_ARE���DTHS_B�� 0x10000000 ��
Fixed-��dth tab characters
#define LINE_ED��OR_B�� 0x40000000
�� Document is line editor mode

NO��RAP_B�� turns off word wrapping (�hich means a line
of text ��ll continue horizontally until a carriage-
return or line-feed character is encountered).

NO_LF_B�� causes HER��S Paige to ignore line-feed
characters. The usual purpose of this setting is for
��ported text that contains both CR and LF at the end
of every line; setting the NO_LF_B�� attribute ��ll
cause LF characters to be invisible and have no effect
of any kind.

NO_DEFAU���LEADING prevents any extra leading reported
by the system for font attributes. In ��ndows, extra
�ead��g is the external leading value reported by
Ge��ex��etrics; in Macintosh, it is the leading value
reported by GetFontInfo. By default, HER��S Paige adds
the extra leading to every line unless this attribute
is set.

NO_ED���B�� disables editing. In effect, if
NO_ED���B�� is set, the "caret" ��ll not blink and the
user can't insert characters.

EX��RNAL_SCROLL_B�� tells HER��S Paige that your
application ��ll control all scrolling. (�his fairly
complex subject is discussed elsewhere.)

COUN��LINES_B�� tells HER��S Paige to keep track of
line and paragraph numbers, in which case you can use
the line and paragraph numbering features in HER��S
Paige (see section 24.8, Line and Paragraph Numbering).
Please note that constantly counting lines and
paragraphs, particularly if the document is large and
contains wordwrapping ��th style changes, can consume
considerable processing t��e. Hence, COUN��LINES_B��
has been provided to enable/disable this feature.

NO_HIDDEN���X��B�� suppresses the display of all text
that is "hidden" (HER��S Paige ��ll accept a hidden
text attribute as a style). If this bit is not set,
hidden text is displayed ��th a grey strike-through
line; if it is set, the text is completely invisible
and ignored for line ��dth computations.

SHO��INVIS_CHAR_B�� causes all invisible characters
(control codes such as CR and LF) to be displayed using
special character symbols. These symbols are defined in
pg_globals (see section 3.8, Changing Globals).

EX_D���NSION_B�� tells HER��S Paige to include the
exclusion area as part of the "document height".

NO���NDO��VIS_B�� – Do not respect ��ndow's clipped
area.

��AR��QUO��S_B�� – Do "smart quotes" (curly quotation
marks).

NO_��AR��CU��B�� – Do not do "smart cut/paste"

NO_SO���HYPHEN_B�� – Ignore soft hyphens

NO_DUAL_CAR���B�� – Do not show dual carets

SCALE_VIS_B�� tells HER��S Paige to scale the vis_area
along ��th the text when scaling has been enabled. By
default, the vis_area is left alone when an HER��S
Paige document is scaled, leaving the text "behind" the
visual boundaries reduced or enlarged. In certain cases

—particularly when employing multiple pg_refs into the
same document as "edit boxes"—you need this attribute
set; for single pg_ref documents that fill all or most
of the ��ndo�, you generally do not want this attribute
set.

B��MAP_ERASE_B�� tells HER��S Paige to erase area(s) on
the page using offsetting bi��ap dra��ng, other��se the
same portions of the screen are erased directly. The
purpose of this attribute is to draw "background"
graphics in the ��ndow when/if HER��S Paige needs to
erase the screen.

TABS_ARE���DTHS_B�� causes all characters to display as
no more or less than "��de" blanks. For example, if
this attribute is not set, a character aligns the
character(s) that follow to the next logical tab stop;
if this attribute is set, the a tab character is s��ply
a fixed-��dth space (the default tab spacing per HER��S
Paige globals).

LINE_ED��OR_B�� tells HER��S Paige that you intend to
maintain the document as a "line editor", defined as
one where words ��ll not wrap and all lines remain the
same height. If HER��S Paige knows this in advance, it
can bypass the usual "pagination" functions and you can
achieve substantially increased performance for line
editors.

NO��

If you set LINE_ED��OR_B��, you must not set any
attributes to wrap the text, nor should you vary the
point size(s) or attempt any irregular page shapes or
page breaks. You can still produce multi-styled text as
long as the text height(s) are consistently the same.

Any (or all) of the above settings can exist at once.

NO��

You can a��ays change these attributes after an HER��S
Paige object is created (see section 3.1, Changing
Attributes).

Example – pgNew

/* This creates a new HER��S Paige object */
��nclude <Paige.h>
��nclude "pgTraps.h"
extern pg_globals paige_rsrv;

�� Routine: Open���ndow
�� Purpose: Open our ��ndow
/* Note: the ��ndow has already been made and ��ll
be shown and selected ��mediately after this
function */

void Open���ndo�(��ndowPtr ��n_ptr)
{

if (��n_ptr��nil) /* See if opened OK */
{
pg_ref result;
shape_ref vis, wrap;
rectangle rect;

/* this sets vis_area and wrap_area to the
shape of the ��ndow itself */

Rec��oRectangle(��n_ptr��portRect, &rect);
vis = pgRec��oShape(�paige_rsrv, &rect);
wrap = pgRec��oShape(�paige_rsrv, &rect);
result = pgNe�(�paige_rsrv, NULL, vis, wrap,

NULL, EX_D���NSION_B��);
} /* End of IF */

}

2.9 Disposing an HER��S Paige Object

Once you are completely through ��th a pg_ref (e.g.,
user closes the ��ndo�), dispose it ��th:

(void) pgDispose (pg_ref pg);

This function disposes all data structures ��thin pg;
the pg_ref ��ll no longer be valid.

Be certain you have not shut down the HER��S Paige
library before disposing a pg_ref, or you ��ll crash.

NO�� (��crosoft Foundation Classes)

The best place to destroy the HER��S Paige object is in
the OnDestroy() member of your CView derived class.
Example:

(.CPP)

void PGView��OnDestroy()
{

pgDispose(��Paige);
CView��OnDestroy();

}

2.10 Getting the "Globals" Pointer

If you need to obtain the pointer to pg_globals
(originally given to pgInit and to pgNew), you can get
it from a pg_ref using the follo��ng:

(pg_globals_ptr) pgGetGlobals (pg_ref pg);

The typical use for pgGetGlobals is to obtain a pointer
to pgGlobals in places where the original global
structure, given to pg_init, is not easily accessible.

FUNC��ON RESU��: This function returns the globals
pointer as saved in pg.

To change globals, see section 3.8, "Changing Globals".

2.11 Displaying

To draw the text in a pg_ref to a ��ndo�, use the
follo��ng function:

(void) pgDisplay (pg_ref pg, graf_device_ptr
target_device, shape_ref vis_target, shape_ref
wrap_target, co_ordinate_ptr offset_extra, short
draw��ode);

The pg_ref's contents are drawn to the target_device.
If, however, you pass a null pointer to target_device
the text ��ll be drawn to the default device set during
pgNew. (For the purposes of getting "Up and Running",

we ��ll assume you want to draw to the default device,
which ��ll typically be a ��ndow that was created prior
to pgNew, so pass a null pointer).

vis_target and wrap_target parameters are optional
shapes which ��ll temporarily redefine the HER��S Paige
object's vis_area and wrap_area, respectively. Using
these ��o parameters, you can temporarily control
and/or change the way an HER��S Paige object ��ll
display. Text gets clipped to vis_target, or, if
vis_target is a null pointer, to the original
vis_area, and text ��ll wrap ��thin wrap_target, or,
if wrap_target is M���NULL, ��thin the original
wrap_area. (For the purposes of getting "Up and
Running", pass M���NULL for these ��o parameters.)

If offset_extra is non-null, all dra��ng is offset by
the amounts in that coördinate (all text is offset
horizontally by offset_extra �� h and vertically by
offset_extra �� v. If offset_extra is a null pointer,
no extra offset is added to the text.

The draw��ode parameter defines the way text should be
transferred to the target device. The draw��ode
selections are shown belo�.

See section 16.9, Display Proc, about how to add
ornaments to the text display.

NO��

You do not need to specify any dra��ng device for
pgDisplay if you intend to display in the ��ndow given
to pgNew. In this case, just pass NULL to the
target_device parameter.

If for some reason you need to redirect the display to
some other ��ndow or device (such as a bi��ap), you can
create a graf_device record for that purpose and pass a
pointer to that structure for the target_device.

Creating a graf_device for this purpose is the same as
the graf_device record used for pgPrin��oPage. See
Printing in ��ndows under section 16.5.

Draw Modes

typedef enum
{

dra��none, ��
Do not draw at all

best��ay,
�� Use most efficient method(s)

direct_copy, �� Directly
to screen, overwrite

direct_or, ��
Directly to screen, "OR"

direct_xor, ��
Directly to screen, "XOR"

bits_copy, ��
Copy offscreen

bits_or,
�� Copy offscreen in "OR" mode

bits_xor,
�� Copy offscreen in "XOR" mode

bits_emulate_copy �� Copy "fake"
offscreen

bits_emulate_or �� "Fake" offscreen
in "OR" mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

"Bits-emulate" Mode

The dra��ng modes bits_emulate_copy, bits_emulate_or,
and bits_emulate_xor are identical to bits_copy,
bits_or and bits_xor save that no bi��aps are used and
the dra��ng is directly to the screen. Unlike the non-
bi��ap dra��ng modes, however, HER��S Paige's standard
callback hooks are called to allow modification to its
"bi��ap", which in this case is the direct screen.
Bi��ap modification is typically used to render
background ��ages, patterns, and other forms of
graphics.

NO��

Unless you need to create a special or unusual effect,
a��ays pass direct_or or bits_emulate_or when
responding to W��PAINT (��ndows) or an update event

(�acintosh), and best��ay for all other functions
requiring a draw��ode.

Additional draw modes require the developer to use the
custom draw hook and draw his own. See "text_dra��proc"
for information on how to do custom dra��ng.

A value of dra��none ��ll disable all dra��ng and
visual scrolling. In other words, if the HER��S Paige
document changes in some way, nothing would change on
the screen until the application re-displayed the
HER��S Paige text contents. The "draw nothing" feature
is used only for special cases where an application
wants to change ��thout dra��ng anything yet.

Responding to W��PAINT Event (��ndows)

{
PAINT��RUCT ps;
BeginPaint(hWnd, &ps);
pgDisplay(pg, NULL, M���NULL, M���NULL, NULL,
direct_or);
}
EndPaint(hWnd, &ps);

To display the HER��S Paige object in ��C, use
OnPaint(). Do not try to use OnDra�() or it ��ll not
draw correctly.

EXAMPLE

(.CPP)

void PGView��OnPaint()
{
CWnd��OnPaint();

�� If you don't use the OnEraseBkgnd() member of the
��C class,
�� you must erase the background of the ��ndow
first.

pgDisplay(��Paige, NULL, M���NULL, M���NULL, NULL,
bits_emulate_or);
}

2.12 Key Insertion

HER��S Paige actually makes very little distinction
be��een keyboard entry and any other text insertion,
and in both cases the follo��ng function is used:

(pg_boolean) pgInsert (pg_ref pg, pg_char_ptr data,
long length, long position, short insert��ode, short
modifiers, short draw��ode);

This function ��ll insert length bytes pointed to by
data. The insertion ��ll occur at byte offset position
if it is positive or zero; if position is
CURREN��POS���ON (a #defined constant of -1), the
insertion occurs at the current insertion point.

The insert��ode parameter defines the type of data
being inserted, which can be any of the follo��ng:

typedef enum
{

key_insert��ode, �� Typing
insertion

key_buffer��ode, �� Typing-
buffer insertion

data_insert��ode, �� Raw data

insertion
}

For keyboard entry, pass key_insert��ode or
key_buffer��ode; for any other data insertion, pass
data_insert��ode.

The difference be��een the ��o "key" insert modes and
data_insert��ode is that a key insertion can contain
special controls such as arrow keys and backspace
(delete). For data_insert��ode, the bytes ��ll be
inserted as is.

If key_insert��ode is used, the new character(s) ��ll
draw ��mediately if draw��ode is nonzero.

If key_buffer��ode is used, character(s) ��ll be
buffered (temporarily saved) and drawn later by HER��S
Paige; the purpose of this mode is to avoid "getting
ahead" of keyboard entry on complex document entry. It
is also useful for Macintosh double-byte script entry,
in which the text is entered all at once from a
floating palette ��ndo�.

NO�� (��ndows)

The key_buffer��ode is usually meaningless in the
��ndows environment; instead, you should a��ays use
key_insert��ode when processing keyboard characters.
Using key_buffer��ode (�here chars are stored and
inserted later) requires a call to pgIdle which, under
the ��ndows messaging syste�, would require you to set
up a "t��er" message that occurs every few
��lliseconds, which is probably not ��plemented in most
applications.

If keys are buffered, HER��S Paige ��ll display the new
text during the first pgIdle function call (see section
2.15, Blinking Carets and Mouse Selections).

NO��

"Arrows" and other control codes are defined (and
changeable) in the pg_globals record (see section 3.8,
Changing Globals); these special controls ��ll be

processed correctly for key_insert��ode and
key_buffer��ode only.

The modifiers parameter can change the way the pg_ref
��ll respond to special control characters for
key_insert��ode (modifiers is ignored for the other
insertion modes). In the current version, the follo��ng
value is supported:

#define EX��ND��OD_B�� 0x0001 �� Extend the
selection

If modifiers is EX��ND��OD_B��, the selection range is
extended if an arrow key is "inserted." Other selection
modifier bits are explained in Modifiers under section
2.15, "Blinking Carets and Mouse Selections".

The draw��ode for pgInsert performs identically to
pgDisplay and can be any of the verbs defined for
dra��ng. If you just want to insert but not display,
pass dra��none for draw��ode. If key_buffer��ode is
used for insertion, the draw��ode is saved and used
later when the text is displayed.

For keyboard insertions, the recommended draw��ode is
best��ay.

CAU��ON (�acintosh)

Mac developers should not confuse these
modifier bits ��th the modifiers given in the
event record. There is no s���larity. The
modifiers shown here are the ones HER��S Paige
supports.

NO��

The insertion ��ll assume either the text format of the
current insertion point OR the format of the last
style/font/format change, whichever is more recent.
This is true even if you specify an insert position
other than the current point. If you want to force the
insertion to be a particular font or style, s��ply call
the appropriate function to change the text format
prior to your insertion.

FUNC��ON RESU��

The function returns TRUE if the text and/or
highlighting in pg changed in any way. Note that no
change occurs only if key_buffer��ode is passed as the
insert mode, in which case the characters are stored
and not drawn until the next call to pgIdle. Another
situation that ��ll not change anything visually is
passing dra��none as the draw��ode. In both cases,
pgInsert would return FALSE. The purpose of this
function result is for the application to know whether
or not it should update scrollbar values or scroll to
the insertion point, etc. (i.e., it is a waste of
processing t��e to check or change scroll positions if
nothing changed on the screen).

Running Unicode

If you are using the Unicode-enabled HER��S Paige
library, the "data" to be inserted is expected to be
one or more 16-bit characters. The data size in this
case is assumed to be a character count (not a byte
count). This is due to the fact that if UNICODE is
defined in your preprocessor or header files (�hich it
should be for a true Unicode-enabled application), a
pg_char_ptr changes from a byte pointer to a 16-bit
character pointer.

For example, to insert the Unicode value 0x0041 (letter
"A") you would pass the value of 1 in the length
parameter even though the character size is technically
2 bytes long.

��CH NO��: Insert Positions

The specified insertion position is a zero-relative
byte offset. Note that this is a byte—not a "character"
offset (characters in HER��S Paige can be more than one
byte), rather a byte offset from the beginning of all
text in pg, starting at zero.

EXCEP��ON: The pure Unicode version measures everything
as 16 bit characters. Hence, the insertion point in
this case is a character position.

If one or more characters are currently selected
(selection range ≥ one character), those characters are
deleted before the insertion occurs. Note that if the
specified insertion position were CURREN��POS���ON, the
insertion ��ll occur to the ��mediate left of the
previously selected text (�hich ��ll have been
deleted).

After the insertion, the new insertion position in pg
is advanced to length bytes from the original specified
position. Example: If 100 bytes were inserted at text
position 500 when pgInsert returns the current
insertion position ��ll be 600.

APPLIED ��YLE(S) AND INSER��ON

If pgInsert occurs at the current insertion point,
whatever the last style and/or font that was applied to
that insertion point ��ll be applied to the next
insertion.

For example, suppose all text in pg is currently
"Helvetica" font, and pg has a single insertion point
(not a selected range of characters). Before inserting
new text, a call is made to pgSetFontInfo ��th "T��es
Roman" font; the very next subsequent pgInsert would
apply T��es Roman—not Helvetica—to the new text.

However, if the insertion occurs somewhere other than
the current insertion, the font/style that is applied
��ll be whatever font/style applies to that position in
text.

Hence, to ��plement the insertion of specific, multi-
stylized text, the logic to perform should be as
follows:

pgSetStyleInfo(���) - and/or - pgSetFontInfo(���);
pgInsert(���, CURREN��POS���ON,���);
pgSetStyleInfo(���) - and/or - pgSetFontInfo(���);
pgInsert(���, CURREN��POS���ON,���); etc.

NO��: For repetitive insertions, the insertion point
��ll automatically advance the number of bytes you
insert, so normally you should not need to set a new

position if you are doing repetitive, sequential
insertions.

WARNING: If you need to apply a specific font or style
to a text insertion (such as in the logic above), do
not set the insertion point after you set the
style/font or that style/font attribute may be lost. If
you must set position, do so be�ore calling
pgSetFontInfo or pgSetStyleInfo.

EXAMPLE

WRONG WAY:

pgSetStyleInfo(���);
pgSetSelection(pg, 0, 0); ����� previous style
setting is lost!
pgInsert(���);

RIGHT WAY:

pgSetSelection(pg, 0, 0);
pgSetStyleInfo(���); �� ��� Style gets applied to
next insertion
pgInsert(���);

��CH NO��: Nothing happens

Nothing seems to happen when I insert
text.

If you are doing inserts ��th key_insert��ode, HER��S
Paige won't do anything if the pg_ref is deactivated.
That ��ght be the proble�. If so, you need to use
data_insert��ode, not key_insert��ode, and it ��ll
then work; pgInsert does nothing.

2.13 Keyboard Editing ��th ��C
(��ndows)

To get Up a�d Ru����g ��th basic keyboard editing you
must add the follo��ng code to your ��C view class:

(.H)
�� Declare the follo��ng private variables.
short ��KeyModifiers;

(.CPP)

�� Respond to the ��ndows message W��KEYDOWN���
void PGView��OnKeyDown(UINT nChar, UINT nRepCnt,
UINT nFlags)
{
pg_globals globals = ((�y��nApp*)AfxGetApp()) ��
��Globals;
pg_short_t verb;

s��tch(nChar)
{

case VK_SHI��:
��KeyModifiers ��

EX��ND��OD_B��;
break;

case VK_CONTROL:
��KeyModifiers ��

CONTROL��OD_B��;
break;

case VK_LE��:
SendMessage(���CHAR, globals

�� left_arro��char);
break;

case VK_UP:
SendMessage(���CHAR, globals

�� up_arro��char);
break;

case VK_RIGHT:
SendMessage(���CHAR, globals

�� right_arro��char);
break;

case VK_DOWN:
SendMessage(���CHAR, globals

�� down_arro��char);
break;

case VK_HO��:
verb = begin_line_caret;
if(��KeyModifiers &

CONTROL��OD_B��)
verb = home_caret;

if(��KeyModifiers &
EX��ND��OD_B��)

verb ��
EX��ND_CAR���FLAG;

pgSetCaretPosition(�Paige,
verb, TRUE);

pgScrol��oVie�(��Paige,
CURREN��POS���ON, 0, 0, TRUE, bits_emulate_or;

break;
case VK_END:

verb = end_line_caret;
if(��KeyModifiers &

CONTROL��OD_B��)
verb =

doc_botto��caret;
if(��KeyModifiers &

EX��ND��OD_B��)
verb ��

EX��ND_CAR���FLAG;
pgSetCaretPosition(��Paige,

verb, TRUE);
pgScrol��oVie�(��Paige,

CURREN��POS���ON, 0, 0, TRUE, bits_emulate_or;
break;

case VK_PRIOR:
SendMessage(���VSCROLL,

SB_PAGEUP);
break;

case VK_DEL���:
if(��KeyModifiers &

EX��ND��OD_B��)
{

long start, end;
pg_ref scrap;

pgGetSelection(��Paige, &start, &end);
if(start �� end)

return;
scrap =

pgCut(��Paige, &start, &end);
assert(scrap);
OpenClipboard();
pgPutScrap(scrap, 0,

pg_void_scrap);
CloseClipboard();
pgDispose(scrap);
scrap = M���NULL;
SetChanged();

}
else

{
SendMessage(���CHAR,

globals����d_delete_char);
}

case VK_NEXT:
SendMessage(���VSCROLL,

SB_PAGEDOWN);
break;
pgScrol��oVie�(��Paige,

CURREN��POS���ON, 0, 0, TRUE, bits_emulate_or);
break;

}
}

break;
case VK_INSERT:
{
if(��Key��odifiers & CONTROL��OD_B��

{
long start, end;
pg_ref scrap;

pgGetSelection(��Paige, &start, &end);
if(start �� end)

return;
scrap =

pgCopy(��Paige, NULL);
assert(scrap);
OpenClipboard();
pgPutScrap(scrap, 0,

pg_void_scrap);
CloseClipboard();
pgDispose(scrap);

}
else if(��KeyModifiers &

EX��ND��OD_B��)
{

pg_ref scrap =
M���NULL;

OpenClipboard();
scrap =

pgGetScrap(globals, 0, Hook��bedProc);
CloseClipboard();
if scrap
{

pgPaste(��Paige, scrap, CURREN��POS���ON, false,
best��ay);

pgDispose(scrap)
}

}
}
pgScrol��oVie�(��Paige,

CURREN��POS���ON, 0, 0, TRUE, bits_emulate_or);
break;

}
}

�� Respond to the ��ndows message W��KEYUP���
void MyView��OnKeyUp(UINT nChar, UINT nRepCnt, UINT
nFlags)
{

s��tch(nChar)
{

case VK_SHI��:
��KeyModifiers &=

(~EX��ND��OD_B��);
break;

case VK_CONTROL:
��KeyModifiers &=

(~CONTROL��OD_B��);
break;

}
}

�� Respond to the ��ndows message W��CHAR���
void MyView��OnChar(UINT nChar, UINT nRepCnt, UINT
nFlags)
{

pg_char the_char = (pg_char)nChar;
pgInsert(�Paige, ��he_char, 1,

CURREN��POS���ON, key_insert��ode, ��KeyModifiers,
best��ay);

pgScrol��oVie�(��Paige, CURREN��POS���ON, 0,
0, TRUE, bits_emulate_or);
}

2.14 Pending Buffer Insertions

As mentioned in pgInsert, if key_buffer mode is used,
the characters get stored in an internal buffer and get
inserted during the next pgIdle.

There ��ght be an occassion, however, that requires
��mediate insertion of anything pending in this buffer.
To do so, call the follo��ng:

(pg_boolean) pgInsertPendingKeys (pg_ref pg);

Calling this function ��ll ��mediately "empty" any
pending characters, inserting and displaying them as
appropriate. If there aren't any pending characters,
pgInsertPendingKeys does nothing. The function returns
TRUE if one or more characters were inserted.

NO��

The display mode used when HER��S Paige displays the
pending buffer ��ll be the original display mode passed
to pgInsert.

2.15 Blinking Carets and Mouse
Selections

Caret blinking (�acintosh only)

To cause the "caret" to blink in a pg_ref, call the
follo��ng as often as possible:

(pg_boolean) pgIdle (pg_ref pg);

NO�� (�acintosh):

pgIdle should be called repeatedly while you are
waiting for an event.

The pg parameter must be a valid pg_ref (can not be a
null pointer).

FUNC��ON RESU��: The function returns TRUE if
character(s) were inserted and displayed that were
stored previously from pgInsert calls ��th
key_buffer��ode. This ��ll only happen if you had
called pgInsert, passing key_buffer��ode as the data
transfer parameter. A result of TRUE or FALSE from

pgIdle can help your application know whether or not it
should update scrollbar values (since new text has been
inserted). For ��ndows key_buffer��ode is not usually
necessary (see section 2.12, Key Insertion).

NO�� (��ndows)

You do not need to call pgIdle() since the blinking
caret is maintained by the OS. Needlessly calling
pgIdle, however, is har��ess.

Clicking & Dragging

Clicking and dragging is accomplished by using the
follo��ng function:

(long) pgDragSelect (pg_ref pg, co_ordinate_ptr
location, short verb, short modifiers, long
track_refcon, short auto_scroll);

To change the insertion point in a pg_ref (i.e., in
response to a mouse click), call pgDragSelect ��th the
location parameter set to the location of the "click."
The coördinate values must be local to the ��ndow's
coördinate system (relative to the top-left ��ndow
origin).

For Macintosh, location should be the same as the
"where" member of the EventRecord, converted to local
coördinates.

For ��ndows, location is usually the coördinates given
to you in lParam when responding to W��LBUTTONDOWN,
W��LBUTTONDBLCLK, or WM��OUS��OVE.

The verb parameter defines what action should occur,
which must be one of the follo��ng:

enum
{

mouse_down, �� First-t��e click
mouse��oved, �� Mouse moved
mouse_up, �� Mouse

button released
}

NO��: pgDragSelect() does not retain control at any
t��e—it a��ays returns control ��mediately regardless
of what verb is passed.

For the first click, pass mouse_down in verb.

In a Mac��tos�-spec���c application, while the user is
holding down the mouse button, wait for the mouse
location to change and, if it does, call pgDragSelect
��th the new location but ��th verb as mouse��oved.

In a ���dows-spec���c application, call
pgDragSelect(�ouse��oved) in response to a
WM��OUS��OVE if the mouse button is still down.

When the mouse button is released, pass the final
location and mouse_up for verb.

NO��

It is ��portant to call pgDragSelect ��th mouse_up
after the user releases the mouse button eve� �� t�e
�ouse �ever �oved �ro� �ts or�g��a� �ocat�o�. This is
because HER��S Paige performs certain housekeeping
chores when mouse_up is given.

The modifiers parameter controls the way text is
selected. For "normal" click/drag, pass zero for this
parameter; for added effects (such as responding to
double-clicks, shift-clicks, etc.), see [�odifiers]
[�2.15-Blinking-Carets-&-Mouse-Selections] under
section 2.15, "Blinking Carets and Mouse Selections".

If auto_scroll is TRUE, HER��S Paige ��ll
automatically scroll the document if pgDragSelect (��th
verb as mouse��oved) has gone beyond the vis_area. See
chapter 11, All About Scrolling. For getting "Up and
Running", you can pass TRUE for this parameter.

track_refcon is used when and if HER��S Paige makes a
call to the track-control-callback function. If a style
is a "control" (the control bit set for the style class
bits field), HER��S Paige calls the tracking control
function hook and passes the track_refcon to the app.

In other words, this value is application-defined and
HER��S Paige does nothing ��th it. For getting "Up and
Running", you can pass 0 for this parameter.

FUNC��ON RESU��

For "normal" mouse tracking, ignore the function result
of pgDragSelect. The only t��e the function result is
significant is when you have custo��sed a style to be a
"control" (information is available on "control" styles
under "Custo��sing HER��S Paige”). If you have not
custo��sed HER��S Paige in any way, pgDragSelect ��ll
a��ays return zero.

Modifiers

The follo��ng bit settings are supported for the
modifiers parameter in this release:

#define EX��ND��OD_B�� 0x0001 �� Extend
the selection
#define WORD��OD_B�� 0x0002 ��
Select whole words only
#define PAR��OD_B��
0x0004 �� Select whole paragraphs only
#define LINE��OD_B�� 0x0008 ��
Highlight whole lines
#define VER��CAL��OD_B�� 0x0010 �� Allow
vertical selection
#define DIS��OD_B��
0x0020 �� Enable discontinuous selection
#define ��YLE��OD_B�� 0x0040 ��
Select whole style range
#define WORD_C����OD_B�� 0x0080 �� Select
"words" del���ted by ctrl chars
#define NO_HALF_CHARS_B�� 0x0100 �� Do not go
left/right on half chars
#define CONTROL��OD_B�� 0x0200 �� Word
advance for arrows

Various combinations of these bits can generally be set
to create the desired effect such as word selections,
paragraphs selections, etc., save that vertical
selection does not work ��th the other modifiers. If

��sused regardless, it ��ll produce unpredictable
results.

The follo��ng is a description of how text is
highlighted in response to each of these bits:

EX��ND��OD_B�� ��ll extend the selection for verb of
mouse_down (other��se the previous selection is
removed). For Macintosh, this is the same as "shift-
click" (but you need to deter��ne that from your
application and set this bit).

WORD��OD_B�� ��ll select whole words, other��se only
single characters are selected.

PAR��OD_B�� ��ll select whole paragraphs.

This is different than LINE��OD_B�� (belo�) since a
paragraph could contain several lines if word wrapping
exists.

LINE��OD_B�� ��ll select whole lines. This differs from
PAR��OD_B�� since a paragraph ��ght consist of many
lines.

VER��CAL��OD_B�� allows vertical selection. This bit
really causes a rectangular region that selects all
characters intersecting that region and ��ll not follow
any particular character. VER��CAL��OD_B�� is mainly
useful for tables and tabular columns.

DIS��OD_B�� allows discontinuous selections. If this
bit is set, the previous selection remains and a new
selection range is started (HER��S Paige can have
multiple selection ranges).

��YLE��OD_B�� causes whole style ranges to become
selected. This is s���lar to word/paragraph/line
highlighting except style changes are considered the
del���ters (�hich also means the whole document could
be selected in one click if only one style exists).

WORD_C����OD_B�� causes text be��een control characters
to be selected. This is s���lar to word/paragraph/line
highlighting except control codes are considered the
del���ters.

NO��: In HER��S Paige "control codes" or
"control characters" are not necessarily
l���ted to standard ASCII symbols. Control

characters in the HER��S Paige context are
defined in pg_globals (see "Changing
Globals”).

NO_HALF_CHARS_B�� controls whether or not dragging can
change the selection point half way into a character.
Normally, if this bit is not set, once the mouse moves
half way into a character, that character is considered
to be "selected" (or unselected if moving in the
opposite direction). Setting this bit, however,
instructs pgDragSelect not to select the character
until it has completely crossed over its area.

CONTROL��OD_B�� is used mainly ��th arrow keys. This
causes the selection to advance to the next word (right
arro�) or to the previous word (left arro�).

For additional information about highlighting and
selection range(s), see chapter 10, All About
Selection.

2.16 Click & Drag using ��crosoft
Foundation Classes (��ndows)

To get Up and Running ��th s��ple mouse drag select in
��C, use the follo��ng code as a starting point:

(.H)
/* Declare the follo��ng private variables. Make
sure to set ��Dragging to FALSE in the construct to
avoid the unintialized variable bug�� */

short m��ouseModifiers;
BOOL ��Dragging;

(.CPP)
�� Respond to the ��ndows message W��LBUTTONDOWN���
void MyView��OnLButtonDown(UINT nFlags, CPoint
point)
{

CView��OnLButtonDown(nFlags, point);
co_ordinate mouse { point.y, point.x };
SetCapture();
��Dragging $=$ TRUE;
if(nFlags & MK_SHI��)

m��ouseModifiers �� EX��ND��OD_B��;

if(nFlags & MK_CONTROL)
m��ouseModifiers �� PAR��OD_B��;
pgDragSelect(��Paige, &mouse,

mouse_down, m��ouseModifiers, 0, TRUE);
}

�� Respond to the ��ndows WM��OUS��OVE message���
void MyView��OnMouseMove(UINT nFlags, CPoint point)
{

CView��OnMouseMove(nFlags, point);
co_ordinate pg��ouse = {point.y, point.x};
if(��Dragging)
{

pgDragSelect(��Paige, &mouse,
mouse_up, m��ouseModifiers, 0, FALSE);

m��ouseModifiers = 0;
ReleaseCapture();
��Dragging = FALSE;

}
}

Responding to ��ndows mouse events

case W��LBUTTONDBLCLK:
pg��odifiers = pg��odifiers = WORD��OD_B��;

�� fall through to W��LBUTTONDOWN

case W��LBUTTONDOWN:
if(pgRef)
{

co_ordinate pg��ouse;
mouse_contact = TRUE;
SetCapture(hWnd);
pg��ouse.h = lParam & OxFFFF;
pg��ouse.v = ((lParam & OxFFFF0000)

�� 16);

if (�Param & MK_SHI��)
pg��odifiers �� EX��ND��OD_B��;

if (�Param & MK_CONTROL)
pg��odifiers �� DIS��OD_B��;
pgDragSelect(pgRef, &pg��ouse, mouse_down,

pg��odifiers, 0, TRUE);

}
return 0 ;

case W��LBUTTONUP:
if(pgRef)
{

co_ordinate pg��ouse;
pg��ouse.h = lParam & OxFFFF;
pg��ouse.v = ((lParam & OxFFFF0000)

�� 16);
mouse_contact = FALSE;
pgDragSelect(pgRef, &pg��ouse,

mouse_up, pg��odifiers, 0, FALSE);
pg��odifiers = 0;
ReleaseCapture();

}
return 0;

case WM��OUS��OVE:
if(�ouse_contact)

pgDragSelect(pgRef, &pg��ouse,
mouse��oved, pg��odifiers, 0, TRUE);

else

{
pg_view = pgPtInVie�(pgRef,

&pg��ouse, NULL);

if (pg_view & W��HIN���X�)
SetCursor(LoadCursor(NULL,

IDC_IBEA�));
else

SetCursor(LoadCursor(�ULL,
IDC_ARRO�));

}
}
return 0;

��CH NO��: Turn automatic scroll off

To prevent selecting/scrolling you would s��ply pass
FALSE for pgDragSelect so it doesn't try to auto-
scroll. As far as not letting the user select text
outside the visual area, I would s��ply check to see if
the coördinate that ��ll get passed to pgDragSelect is
outside of the view area and if it is, just force it to
some other point that is ��thin the view area.

In fact, you wouldn't even need to turn off auto-scroll
if you forced the coördinate to a��ays be ��thin the
visual area. Remember, you have complete control over
pgDragSelect (control a��ays comes back to you unlike,
say, TrackControl on Macintosh) so there is no reason
you can't adjust the "mouse" point for each pass.

��CH NO��: Problems ��th mouse clicks -1 (�ac
only)

I have big troubles handling mouse clicks in
the HER��S Paige object ��thin my class
library. If I get a click (��th
Ge��ouse(�hitPt)) and do the follo��ng
(testing a response to a s��ple click)���

Your test code sample should work. Therefore, I have to
conclude there is something wrong ��th the mouse point
you obtain ��th Ge��ouse().

I would guess that you are doing a Ge��ouse() ��thout
regards to the current GrafPort. Since Ge��ouse()
returns a LOCAL point (based on current port's
coördinates), if you don't have the correct GrafPort
set you ��ll get some other coördinate syste�. Worst
case, you are getting "global" coördinates which ��ll
be completely different than what you expect.

Or, another possibility ��ght have to do ��th the
��ndow's "origin". I know that some class libraries
muck ��th this to create scrolling effects.

What you need to do is to check what the actual values
of point.h and point.v really are. I know that
pgDragSelect works; in fact, you should see the caret
��mediately appear at the point you give for mouse_down
verb.

BT�, the usual (best) way for dragging the mouse in a
pg_ref is to get the click right out of the
EventRecord.�here field (first doing a Globa��oLocal
on it). That is by far the most accurate -- but I do
not know if that EventRecord is easily available in
your class library.

2.17 Activate/Deäctivate

To deäctivate a pg_ref (to cause highlighting or the
"caret" to disappear), call the follo��ng function:

(void) pgSetHiliteStates (pg_ref pg, short
front_back_state, short per��state, pg_boolean
sho��hilite);

In a "��ndow" environment, where different ��ndows can
overlap, it is usually desirable to disable any HER��S
Paige objects that are not contained in the front most
��ndo�. To do so, pgSetHiliteState can be called to
turn off the highlighting or the "caret."

An HER��S Paige object, however, contains ��o highlight
states, one for "front/back" activate and deactivate
and one to disable a pg_ref in both states. For
"normal" applications, you ��ll only be changing the
front/back highlight state (activate or deactivate a
pg_ref according to its ��ndow position). The purpose
of the alternate highlight state is to provide a way to
disable a pg_ref completely regardless of its ��ndow
position.

The front_back_state should be one of the follo��ng
values:

typedef enum
{

no_change_verb, �� State stays the same
activate_verb, �� Set to activate mode
deactivate_verb, �� Set to deactivate

mode
}

The per��state parameter provides an alternate
highlight state setting; this parameter can also be any
of the above. For getting "Up and Running," however,
pass no_change_verb for this parameter.

If sho��hilite is TRUE, the highlighting (or caret)
��ll redraw according to pg's new state. A FALSE value
��ll activate or deactivate pg internally (by setting
special flags ��thin the pg_ref) but the highlighting
or caret ��ll remain unchanged. For getting "Up and
Running", a��ays pass TRUE for should_draw.

See also "Additional Selection Support" and
"Activate/Deactivate ��th shape of selection still
sho��ng".

Responding to W��S���OCUS and W��KILLFOCUS
messages

{
case W��KILLFOCUS:

pgSetHiliteStates(pgRef, deactivate_verb,
no_change_verb, TRUE);

case WM S���OCUS:
pgSetHiliteStates(pgRef, activate_verb,

no_change_verb, TRUE);
}

Getting the Highlight State

If you want to know what state a pg_ref is in, call the
follo��ng:

(void) pgGetHiliteStates (pg_ref pg, short PG_FAR
*front_back_state, short PG_FAR *per��state);

The front/back highlight state ��ll be returned in
front_back_state and the alternate state in
per��state. Both parameters ��ll be set to either
activate_verb or deactivate_verb.

NO��S

1. If the highlight status is already set to what is
specified in your parameters (e.g., if you are
deactivating a pg_ref that is already deactivated
or vice versa), this function does nothing.

2. A pg_ref returned from pgNew is set to an active
state.

3. If a pg_ref is in a deactivate state, the caret
��ll not blink even if you call pgIdle and
highlighting ��ll not dra�.

��CH NO��

Why ��o activate states?

One is for regular activate/deactivate for a ��ndow;
the other is to FORCE deactivation regardless of the
��ndow's front/behind state. Haven't you ever been in a
situation where you want to deactivate selections but
the ��ndow is still in front? Using ��o possible
states, it becomes easier to do that. The ��o states
are logically "AND'd" logic for activation: both must
be true or the document is deactivated.

��C NO��

��PORTANT: You must activate and deactivate the HER��S
Paige object in the ��C OnSetFocus() and OnKillFocus()
before any of the functions in this chapter ��ll work.

Example:

(.CPP)

�� Respond to ��ndows message W��S���OCUS���
void MyView��OnSetFocus(CWnd* pOldWnd)
{

CView��OnSetFocus(pOldWnd);
pgSetHiliteStates(��Paige, activate_verb,

no_change_verb, TRUE);
}

�� Respond to ��ndows message W��KILLFOCUS���
void MyView��OnKillFocus(CWnd* pNewWnd)
{

pgSetHiliteStates(��Paige, deactivate_verb,
no_change_verb, TRUE);

CView��OnKillFocus(pNewWnd);
}

3 BEYOND THE DEFAU���

The purpose of this section is to explain some of the
more common additions and/or changes to the "bare
��n��um" ��plementation discussed in the previous
section, "Up and Running."

3.1 Changing Attributes

There ��ll be situations where you want to change the
attributes of an HER��S Paige object after it is
created (these are the bits initially passed to pgNew
for the "attributes" parameter). There are also
situations where you want to exa��ne the current
attributes (to tick a menu ite�, for instance). To do
so, use the follo��ng:

(long) pgGetAttributes (pg_ref pg);
(pg_boolean) pgSetAttributes (pg_ref pg, long
attributes);

To obtain the current attribute bits, call
pgGetAttributes.

FUNC��ON RESU��: The function result ��ll be the
current setting(s) of pg.

To change the attributes, call pgSetAttributes ��th
attributes set to the new bit value(s).

HER��S Paige "attributes" are defined as bit settings
which can be a combination of any bit values shown
below:

#define NO��RAP_B��
0x00000001 �� Wraps only on CR or LF
#define NO_LF_B��
0x00000002 �� <LF> char ignored
#define NO_DEFAU���LEADING 0x00000004 ��
Do not add font leading
#define NO_ED���B��
0x00000008 �� No editing (display only)
#define EX��RNAL_SCROLL_B�� 0x00000010 ��
App controls scrolling

#define COUN��LINES_B�� 0x00000020
�� Track line/para count
#define NO_HIDDEN���X��B�� 0x00000040 ��
Do not display hidden text
#define SHO��INVIS_CHAR_B�� 0x00000080 ��
Show invisible character(s)
#define EX_D���NSION_B�� 0x00000100
�� Exclude ��dth/height
#define NO���NDO��VIS_B�� 0x00000200
�� Do not respect clipped area
#define ��AR��QUO��S_B�� 0x00000800
�� Do "smart" quotes
#define NO_��AR��CU��B�� 0x00001000

�� Do not do "smart" cut/paste
#define NO_SO���HYPHEN_B�� 0x00002000 ��
Ignore soft hyphens
#define NO_DUAL_CAR���B�� 0x00004000
�� Do not show dual carets
#define SCALE_VIS_B��
0x00008000 �� Scale vis_area when scaling
#define B��MAP_ERASE_B�� 0x00010000
�� Erase page(s) ��th bi��ap drwg
#define TABS_ARE���DTHS_B�� 0x10000000 ��
Tab chars are merely ��des
#define LINE_ED��OR_B�� 0x40000000
�� Doc is line editor mode

These are described in section 2.8, Attribute Settings.

FUNC��ON RESU��: After calling pgSetAttributes, the
function result ��ll be TRUE if pg should be redrawn.
The only t��e TRUE is returned is when one or more
attributes have been set that ��ll affect the way text
is drawn or the way word wrap is computed.

WARNING: Before setting attributes, first get the
current settings from the function pgGetAttributes and
change the bits you require and pass that whole long
value to pgSetAttributes. Other��se, the view only
bits ��ll get changed erroneously.

Additional attributes can be set for more advanced
features using the follo��ng set and get functions:

(pg_boolean) pgSetAttributes2 (pg_ref pg, long
attributes); (long) pgGetAttributes2 (pg_ref pg);

To obtain the current, extended attribute bits, call
pgGetAttributes2.

FUNC��ON RESU��: The function result ��ll be the
current setting(s) of the extended attributes of pg.

To change the extended attributes, call
pgSetAttributes2 ��th attributes set to the new bit
value(s).

HER��S Paige "extended attributes" are defined as bit
settings which can be a combination of any of the
follo��ng.

#define KEEP_READ_��YLES 0x00000200
�� Keep existing style_infos for pgReadDoc()
#define KEEP_READ_PARS 0x00000400
�� Keep existing par_infos for pgReadDoc()
#define KEEP_READ_FON�� 0x00000800

�� Keep existing font_infos for pgReadDoc()
#define CHECK_PAGE_OVERFLOW 0x00002000 ��
Constantly check page overflow
#define NO_HAUTOSCROLL 0x00080000
�� Do not autoscroll horizontally
#define NO_VAUTOSCROLL 0x00100000
�� Do not autoscroll vertically

KEEP_READ_��YLES tells HER��S Paige to not remove
existing style_info records from the pg_ref when a
file is read. Normally, all existing style records are
replaced ��th the styles read from an HER��S Paige
file. This attribute is used to retain the existing
styles.

KEEP_READ_PARS tells HER��S Paige to not remove
existing par_info records from the pg_ref when a file
is read. Normally, all existing paragraph records are
replaced ��th the paragraph records read from an HER��S
Paige file. This attribute is used to retain the
existing paragraph records.

KEEP_READ_FON�� tells HER��S Paige to not remove
existing font_info records from the pg_ref when a file
is read. Normally, all existing font records are
replaced ��th the fonts read from an HER��S Paige file.
This attribute is used to retain the existing fonts.

CHECK_PAGE_OVERFLOW tells HER��S Paige to constantly
test the position of the last character in the document
and, if it overflows the bottom of the page_area, sets
an internal field to the number of characters that have
overflowed. The purpose of this attribute is to allow
an application to ��plement features that require "page
overflow checking", but since this requirement requires
constant pagination and extra processing, set this
attribute only when absolutely necessary.

NO_HAUTOSCROLL, NO_VAUTOSCROLL tells HER��S Paige not
to automatically scroll horizontally or vertically,
respectively, when pgDragSelect() is called.

"Auto-checking" page overflow

Setting CHECK_PAGE_OVERFLOW ��th pgSetAttribute2()
causes HER��S Paige to continuously check the situation
where character(s) flow below the boundaries of the
page area. If this attribute is set, the overflo��size
member ��thin the pg_ref get set to the number of
characters that overflow the page.

Or, if overflo��size is set to -1, a single carriage
return is causing the overflow (i.e., the text
overflows but the overflow is a "blank" line).

NO��: The auto-checking for page overflow is
meaningless if your pg_ref is set for repeating pages,
or if your pg_ref is set to a variable page size. The
only t��e overflow checking ��ll work (or make any
sense) is for fixed-size, nonrepeating page shapes.

Checking page overflow

NO��: You should not ��plement this code if your pg_ref
is set for repeating pages, or if your pg_ref is set
for a variable document height.

/* Call the function below after doing anything
that can change the size of the document. This
included insertions, deletions, style and font
changes (�hich can cause new word wrapping) and page
size changes. This function returns the number of
characters that are overflo��ng the page area of pg.
*/

/* Note: CHECK_PAGE_OVERFLOW must be set ��th
pgSetAttributes2(pg). */

long CheckPageOverflow (pg_ref pg)
{

paige_rec_ptr pg_rec;
long_overflo��amount;

pg_rec = UseMemory(pg);
overflo��amount = pg_rec��overflo��size;
UnuseMemory(pg);

return overflo��amount;
}

��CH NO��: Carriage return/line feeds causing
problems

Regarding LF/CR characters, HER��S Paige handles both
of them as a "new line" except a CR. It also starts a
new paragraph, but for LF it just does a line feed.

Note that lines that ter��nate both in LF and CR ��ll
cause ��o lines on the screen — at least in HER��S
Paige default mode.

You can turn that off, however, if you want LF/CR to be
treated as only one líne feed.' To do so, just set
NO_LF_B�� in the HER��S Paige attribute flags during
pgNew. When this attribute is set, HER��S Paige ignores
all LFs embedded in the text (they become invisible).

Note that I haven't mentioned what the values are for
LF and CR, because those are whatever values sit in
HER��S Paige globals. Also as mentioned, MPW ��ll
compile \r etc. differently than Symantec so watch out
for that. See technical note CR/LF Conversion and
section 3.8, Changing Globals.

3.3 A Different Default Font, Style,
Paragraph

Any t��e a new pg_ref is created, HER��S Paige sets the
initial style_info, font_info and par_info (style,

font and paragraph format) to whatever exists in the
corresponding field from pg_globals.

Hence, to set default style, font or paragraph format,
s��ply change the respective information in pg_globals
(see example belo�).

To change the default style information, change
field(s) in pg_globals.def_style; to change the default
font, change field(s) in pg_globals.def_font; to change
the default paragraph format, change field(s) in
pg_globals.def_par.

You can also set the default low-level callback "hook"
functions for style or paragraph records, and even the
general HER��S Paige functions by placing a pointer to
the new function in the respective pg_globals field.
See chapter 27, Custo��sing HER��S Paige.

For example, if you wanted to override the draw-text
callback function a��ays for all styles, you would
change the default draw-text function in the default
style found in pg_globals before your first call to
pgNew (but after pgInit:

pg_globals.def_style.procs.draw = myTextDrawProc;

��� where myTextDrawProc is a low-level callback to
draw text (see "Setting Style Functions”). If you did
this, every new style_info record created by HER��S
Paige ��ll contain your callback function.

The default hooks for general callbacks not related to
styles or paragraph formats are in
pg_globals.def_hooks.

See a complete description of style_info, font_info
and par_info records in chapter 8, Style Basics.

Change defaults after they are created using
pgInit.

These changes ��ll apply to all pgNews that are called
later.

void ApplInit() �� Initialisation of the App
{

pgMe��tartup(�me��globals, 0);
pgInit(�paige_rsrv, &me��globals);

/* change to make the default for all
pg_refs created herein after

9 point instead of 12 point is a fraction

��th hi word being a
point is a fraction ��th hi word being the

whole point value /*

paige_rsrv.def_style.point = 0x00090000;
}

Default tab spacing

You can also change the default spacing for tabs (the
distance to the next tab if no specific tab stops have
been defined in the paragraph format). To do so, change
globals.def_par.def_tab_space.

/* The follo��ng code changes the default tab
spacing (for all subsequent pg_refs) to $32. */

pgMe��tartup(�me��globals, 0);
pgInit(�paige_rsrc, &me��globals);
paige_rsrv.def_par.def_tab_space $=32$;

3.4 Graphic Devices

As mentioned earlier, a ne��y created HER��S Paige
object ��ll a��ays draw to a default device; in a
Macintosh environment, for instance, the default device
��ll be the current port that is set before calling
pgNew. In a ��ndows environment, the default device
��ll be an HDC derived from GetDC(hWnd), where hWnd is
the ��ndow given to pgNew.

Setting a device

It is possible that you ��ll want to change that
default device once a HER��S Paige object has been

created. To do so, call the follo��ng function:

(void) pgSetDefaultDevice (pg_ref pg,
graf_device_ptr device);

The device parameter is a pointer to a structure which
is maintained internally (and understood) by HER��S
Paige. (Generally, you won't be altering its structure
directly, but the record layout is provided at the end
of this section for your reference.)

The contents and significance of each field in a
graf_device depends on the platform in which HER��S
Paige is running. However, a function is provided for
you to initialise a graf_device regardless of your
platform:

(void) pglnitDevice (pg_globals_ptr globals,
generic_var the_port, long machine_ref,
graf_device_ptr device);

The above function sets up an HER��S Paige graphics
port which you can then pass to pgSetDefaultDevice (you
can also use pgInitDevice to set up an alternate port
that can be passed to pgDisplay).

The globals parameter is a pointer to the same
structure you passed to pgInit.

The actual (but machine-dependent) graphics port is
passed in the_port; what should be put in this
parameter depends on the platform you are working ��th,
as follows:

Macintosh (and PowerMac) — the_port should be a
GrafPtr or CGrafPtr; machine_ref should be zero.
��ndows (all OS versions) — the_port should be an
HWND and machine_ref should be M���NULL. Or, if
you only have a device context (but no ��ndo�),
the_port should be M���NULL and machine_ref the
device context. See sample belo�.

The device parameter must be a pointer to an
uninitialised graf_device record. The function ��ll
initialise every field in the graf_device; you can then
pass a pointer to that structure to pgSetDefaultDevice.

NO��S

1. If you specified a ��ndow during pgNe�() and want
the pg_ref to continue displaying in that ��ndo�,
the "default device" is already set, so you do not
need to use these functions. The only reason you
would/should ever set a default device is if you
want to literally change the ��ndow or device
context the pg_ref is associated ��th.

2. HER��S Paige makes a copy of your graf_device
record when you call pgSetDefaultDevice, so the
structure does not need to remain static. But the
graphics port itself (HWND or HDC for ��ndows, or
GrafPtr for Mac) must remain “open” and valid until
it ��ll no longer be used by HER��S Paige.

3. If you need to temporarily change the GrafPtr
(�acintosh) or device context (��ndows), see "Quick
& easy set-��ndow".

CAU��ON: Do not set the same graf_device as the
"default device" to more than one pg_ref. If you need
to set the same ��ndow or device context to more than
one pg_ref, create a new graf_device for each one.

Setting up a graf_device for ��ndows

EXAMPLE 1: Setting up a graf_device from a
��ndow handle (HWND)

graf_device device;

pgInitDevice(�paige_rsrv, (generic_var)hWnd,
M���NULL, &device);
pgSetDefaultDevice(pg, &device);

����� other code, dra�, paint, whatever.

pgCloseDevice(�paige_rsrv, &device);

EXAMPLE 2: Setting up a graf_device from a
device context only (HDC):

graf_device device;

pgInitDevice(�paige_rsrv, M���NULL,
(generic_var)hDC, &device);
pgSetDefaultDevice(pg, &device);

����� other code, dra�, paint, whatever.

Setting default device on the Macintosh

/* This function accepts a pg_ref (already created)
and a ��ndow pointer. The ��ndow is set to pg's
default dra��ng port, so after a call to this
function, all dra��ng ��ll occur in a new ��ndo�. */

void set_ne��paige_port (pg_ref pg, ��ndowPtr
ne��port)
{

graf_device paige_port;
pgInitDevice(�paige_rsrv, ne��port, 0,

&paige_point);
pgSetDefaultDevice(pg, &paige_port);

}

/* Done. HER��S Paige makes a copy of paige_port so
it does not need to be static */

If you want to obtain the current default device for
some reason, you can call the follo��ng:

(void) pgGetDefaultDevice (pg_ref pg,
graf_device_ptr device);

The device is copied to the structure pointed to by
device.

Disposing a device

If you have initialised a graf_device, followed
��mediately by pgSetDefaultDevice(), you do not need to
deïnitialise or dispose the graf_device.

If, however, you have initialised a graf_device that
you are keeping around for other purposes, you must
eventually dispose its memory structures. To so call
the follo��ng:

(void) pgCloseDevice (pg_globals_ptr globals,
graf_device_ptr device);

This function disposes all memory structure created in
device when you called pgInitDevice. The globals
parameter should be a pointer to the same structure
given to pgInit.

NO��S:

1. pgCloseDevice does not close or dispose the
GrafPort (�acintosh) or the HWND/HDC (��ndows) —
you need to do that yourself.

2. You should never dispose a device you have set as
the default device because pgDispose ��ll call
pgCloseDevice. The only t��e you would use
pgCloseDevice is either when you have set up a
graf_device to pass as a temporary pointer to
pgDisplay (or a s���lar function that accepts a
temporary port) in which HER��S Paige does not keep
around, OR when you have changed the default device
(see note belo�).

3. Additionally: HER��S Paige does not dispose the
previous default device if you change it ��th
pgSetDefaultDevice. Thus, if you change the default
you should get the current device (using
pgGetDefaultDevice), set the new device then pass
the older device to pgCloseDevice.

Quick & easy set-��ndow

In certain situations you ��ght want to temporarily
change the ��ndow or device context a pg_ref ��ll
render its text dra��ng. While this can be done by
initialising a graf_device and giving that structure to
pgSetDefaultDevice(), a s��pler and faster approach
��ght be to use the follo��ng functions:

generic_var pgSetDra��ngDevice (pg_ref pg, const
generic_var dra��device);

void pgReleaseDra��ngDevice (pg_ref pg, const
generic_var previous_device);

The purpose of pgSetDra��ngDevice is to temporarily
change the dra��ng device for a pg_ref. The
dra��device parameter must be a ��ndowPtr (�acintosh)
or a device context (��ndows).

The function returns the current device (the one used
before pgSetDra��ngDevice).

NO��: "device" in this case refers to a machine-
specific device, not a graf_device structure.

You should call pgReleaseDra��ngDevice to restore the
pg_ref to its previous state. The previous_device
parameter should be the value returned from
pgSetDra��ngDevice.

Temporarily changing the HDC (��ndows)

/* This function forces a pg_ref to display inside
a specific HDC instead of the default. */

void DrawToSomeHDC (pg_ref pg, HDC hDC)
{

generic_var old_dc;
old_dc = pgSetDra��ngDevice(pg,

(generic_var)hDC);
pgDisplay(pg, NULL, M���NULL, M���NULL,

NULL, best��ay);
pgReleaseDra��ngDevice(pg, old_dc);

}

Setting a Scaled Device Context (��ndows only)

On a ��ndows platfor�, in certain cases you ��ll want
to preset a device context that needs to scale all
dra��ng. However, using the standard function to set a
device into an HER��S Paige object (pgSetDra��ngDevice)
��ll not work in this case because HER��S Paige ��ll
want to clear your mapping mode(s) and scaling
factor(s).

The solution is to inform HER��S Paige that you ��sh to
set your own device context, but to include a scaling

factor:

generic_var pgSetScaledDra��ngDevice (pg_ref pg,
const generic_var dra��device, pg_scale_ptr scale);

This is identical to pgSetDra��ngDDevice() except that
it contains the additional parameter scale which
specifies the scaling factor. For more information on
HER��S Paige scaling, see the appropriate section(s).

3.5 Colour Palettes (��ndows-
specific)

void pgSetDevicePalette (pg_ref pg, const
generic_var palette); generic_var pgGetDevicePalette
(pg_ref pg);

These ��ndows-specific functions are used to select a
custom palette into the device context of a pg_ref. To
set a palette, call pgSetDevicePalette() and pass the
HPAL���� in palette. If you want to clear a previous
palette, pass (generic_var)O.

Setting a palette causes HER��S Paige to select that
palette every t��e it draws to its device context.

To obtain the existing palette (if any), call
pgGetDevicePalette()

CAU��ON: Do not delete the palette unless you first
clear it from the pg_ref by calling
pgSetDevicePalette(pg, (generic_var)0).

CAU��ON: If you change the default device
(pgSetDefaultDevice), you need to set the custom
palette again.

NO��: HER��S Paige does not delete the HPAL����, even
during pgDispose(). It is your responsibility to delete
the palette.

3.6 Changing Shapes

You can change the vis_area, the page_area and/or the
exclude_area of an HER��S Paige object at any t��e (see
section 2.6, Creating a HER��S Paige Object, for a
description of each of these parameters):

(void) pgSetAreas (pg_ref pg, shape_ref vis_area,
shape_ref page_area, shape_ref exclude_area);

The vis_area, page_area, and exclude_area are
functionally identical to the same parameters passed in
pgNew. Of course, you could have passed any of these
shapes in pgNew, but the purpose of pgSetAreas is to
provide a way to change the visual area and/or wrap
area and/or exclusion areas some t��e after an HER��S
Paige object has been created.

Any of the three _area parameters can be M���NULL, in
which case that shape remains unchanged.

Subsequent dra��ng of pg's text ��ll reflect the
changes, if any, produced by the changed shape(s).

A typical reason for changing shapes would be, for
example, to ��plement a "set columns" feature. The
initial HER��S Paige object ��ght have been a s��ple
rectangle ("normal" documents), but let us suppose that
the user later ��shes to change the document to three
columns. To do so, you could set up a page_area shape
for three columns and pass that new shape to page_area
and null pointers for the other ��o areas. The HER��S
Paige object, on a subsequent pgDisplay, would rewrap
the text and flow ��thin these "columns."

NO��S

1. If your area(s) are s��ple rectangles, it may prove
more efficient to use pgSetAreaBounds() in this
chapter.

2. If you s��ply want to "grow" the vis_area (such as
responding to a user changing the ��ndow’s size),
see "Gro��ng" The Visual Area under section 3.6 for
information on pgGrowVisArea.

3. HER��S Paige makes a copy of the new shape(s) you
pass to pgSetAreas. You can therefore dispose these
shapes any t��e afterwards.

For information on constructing various shapes, see
chapter 12, All About Shapes.

If you are ��plementing containers, see chapter 14,
Containers Support.

"Gro��ng" The Visual Area

If you want to change the vis_area (area in which text
displays) in response to a user enlarging the ��ndow's
��dth and height, call the follo��ng:

(void) pgGrowVisArea (pg_ref pg, co_ordinate_ptr
top_left, co_ordinate_ptr bot_right);

The size of vis_area shape in pg is changed by adding
top_left and bot_right values to vis_area's top-left
and bottom-right corners, respectively.

By "adding" is meant the follo��ng: top_left.v is added
to vis_area's top and top_left.h is added to
vis_area's left; bot_right.v is added to vis_area's
bottom and bot_right.h is added to vis_area's right.

NO��: This function adds to (or "subtracts" fro�, if
coördinate parameters are negative) the visual area
rather than setting or replacing the visual area to the
given coördinates.

Either top_left or bot_right can be null pointers, in
which case they are ignored.

NO��: This function only works correctly if vis_area is
rectangular; if you have set a non-rectangular shape,
you need to reconstruct your vis_area shape and change
it ��th pgSetAreas.

Responding to WM SIZE message (��ndows)

case W��SIZE:
if (pgRef)
{

rectangle vis_bounds;
co_ordinate amount_to_grow;
long old���dth, new���dth,

old_height, ne��height;
pgAreaBounds(pgRef, NULL,

��is_bounds);
new���dth = (long) LOWORD(lPara�);
ne��height = (long) H��ORD(lPara�);
old���dth = vis_bounds.bot_right.h -

vis_bounds.top_left.h;
old_height = vis_bounds.bot_right.v

- vis_bounds.top_left.v;
amount_to_gro�.h = new���dth -

old���dth;
amount_to-gro�.v = ne��height -

old_height;
pgGrowVisArea(pgRef, NULL,

(co_ordinate_ptr) &amount_to_gro�);
}

break;

3.7 Getting information about shapes

Getting Current Shapes

To obtain any of the three shapes in a HER��S Paige
object, call the follo��ng:

(void) pgGetAreas (pg_ref pg, shape_ref vis_area,
shape_ref page_area, shape_ref exclude_area);

The vis_area, page_area, exclude_area must be pre-
created shape_refs (see belo�). Any of the�, however,
can be M���NULL (in which case that parameter is
ignored).

This function ��ll copy the contents of pg's visual
area, wrap area, and exclude area into vis_area,
page_area and exclude_area, respectively, if that
parameter is non-null.

Helpful hint: The easiest way to create a shape_ref is
to call pgRec��oShape passing a null pointer to the
rect parameter, as follows:

shape_ref ne��shape;

ne��shape = pgRec��oShape(�paige_rsrv, NULL);

The paige_rsrv parameter in the above example is a
pointer to the same pg_globals passed to pgInit. By
providing a null pointer as the second parameter, a new
shape_ref is returned ��th an empty shape (all sides
zero).

'Get/Set Areas' Trick

If you are using s��ple rectangles for the visual area
or wrap (page) area in an HER��S Paige object, and/or
if you s��ply want to know the bounding rectangular
area of either shape, use the follo��ng instead of
pgGetAreas:

(void) pgAreaBounds (pg_ref pg, rectangle_ptr
page_bounds, rectangle_ptr vis_bounds);

When pgAreaBounds is called, page_bounds gets set to a
rectangle that encloses the entire page_area and
vis_bounds gets set to a rectangle that encloses the
entire vis_area of pg.

If you don't want one or the other, either page_bounds
or vis_bounds can be a null pointer.

This function is useful when you s��ply want the
enclosing bounds of either shape because you do not
need to create a shape_ref.

You can also set the page area and/or vis area by
calling pgSetAreaBounds, which accepts a pointer to a
rectangle in page_bounds and vis_bounds (of which
either can be a null pointer). Note that this is faster
and s��pler than pgSetAreas, except that it only works
provided that the shape(s) are single rectangles.

Direct Shape Access

You can also access the shape_refs in an HER��S Paige
object directly using any of the follo��ng:

(shape_ref) pgGetPageArea (pg_ref pg);
(shape_ref) pgGetVisArea (pg_ref pg);

(shape_ref) pgGetExcludeArea (pg_ref pg);

These three functions ��ll return the shape_ref for
page_area, vis_area and exclude_area, respectively.
Neither ��ll ever return M���NULL (even if you provided
M���NULL for exclude_area in pgNew, for instance,
HER��S Paige ��ll still maintain a shape_ref for the
exclusion, albeit an empty shape).

The purpose of these functions is for special
applications that need to look inside of HER��S Paige
shape as quickly and as easily as possible.

CAU��ON: These functions return the actual memory_ref's
for each shape. You must therefore never dispose of
the�, nor should you alter their contents (or else
HER��S Paige won't know you have changed anything and
word wrapping and display ��ll fail). If you want to
alter the contents of HER��S Paige shapes, see chapters
14, Containers Support, and 15, Exclusion Areas.

Getting Shape Rectangle Quantity

You can find out how many rectangles comprise any shape
by calling the follo��ng:

(pg_short_t) pgNumRectsInShape (shape_ref
the_shape);

The function ��ll return the number of rectangles in
the_shape.

NO��: The result ��ll a��ays be at least 1, even for an
empty shape. Any "empty" shape is still one rectangle
whose boundaries are $0,0,0,0�. If you need to detect
whether or not a shape is empty, call:

(pg_boolean)pg��ptyShape(the_shape); /* Returns
TRUE if empty */

3.8 Changing Globals

As mentioned several t��es, your application provides a
pointer to pgInit (and other places) to be used by

HER��S Paige to store certain global variables. This
structure is initially set to certain default values,
but you can make certain changes that apply to your
particular application.

For example, HER��S Paige globals contain the values
for special control codes such as CR, LF, and arrow
keys, but there are instances when you need to change
some of these "characters" to a different value.

Another (�ore common) reason to change HER��S Paige
globals is to force a default text or paragraph format
for all subsequent pgNe�() calls.

Since your application maintains the globals record,
there are no functions provided to change its contents;
rather, you alter the structure's contents directly
some t��e after pgInit.

NO��: The entire HER��S Paige globals structure can be
viewed in paige.h. Only the members of this structure
that you are allowed to alter are shown unless noted
other��se.

/* Paige "globals" (address space provided by app):
*/

struct pg_globals
{

pg��globals_ptr me��globals;
�� Globals for pgMemManager

long
max_offscreen; ��
Max��um memory for offscreen

long
max_block_size; ��
Max��um size of text block

long
��n��u��line���dth; �� ��n��um
size line ��dth

long
def_tab_space; ��
Default tab spacing for pgNew

pg_short_t line��rap_char;
�� <CR> character

pg_short_t soft_line_char;
�� Soft <CR> character

pg_short_t tab_char;

�� Tab character
pg_short_t soft_hyphen_char;

�� Soft hyphen character
pg_short_t bs_char;

�� Backspace character
pg_short_t ff_char;

�� Form feed chr (for page breaks)
pg_short_t container_brk_char;

�� Container break character
pg_short_t left_arro��char;

�� Left arrow
pg_short_t right_arro��char;

�� Right arrow
pg_short_t up_arro��char;

�� Up arrow
pg_short_t down_arro��char;

�� Down arrow
pg_short_t ��d_delete_char;

�� Forward delete character
pg_char hyphen_char[4];

�� Hard hyphen character
pg_char dec��al_char[4];

�� "." char (for dec��al tabs)

/* Visible surrogate for:

-------------------------*/
pg_char cr_invis_symbol[4];

�� carriage return
pg_char lf_invis_symbol[4];

�� line feed
pg_char tab_invis_symbol[4];

�� horizontal tab
pg_char end_invis_symbol[4];

�� end-of-document
pg_char

pbrk_invis_symbol[4]; �� break-of-page
pg_char

cont_invis_symbol[4]; �� container break
pg_char

space_invis_symbol[4]; �� space

��------------------------
pg_char

flat_single_quote[4]; �� Single
"typewriter" quote

pg_char
flat_double_quote[4]; �� Double

"typewriter" quote
pg_char

left_single_quote[4]; �� Single left smart
quote

pg_char
right_single_quote[4]; �� Single right smart quote

pg_char
left_double_quote[4]; �� Double left smart
quote

pg_char
right_double_quote[4]; �� Double right smart quote

pg_char elipse_symbol[4];
�� Char to draw for ellipse

long invis_font;
�� Machine-specific invisible char font

pg_char unknown_char[4];
�� Used for unsupported characters

long

embed_callback_proc; �� Used internally
by embed_refs

font_info def_font;
�� Default font for all pgNew's

style_info def_style;
�� Default style for all pgNew's

par_info def_par;
�� Default para for all pgNew's

color_value def_bk_color;
�� Default background colour

color_value trans_color;
�� Transparent colour (default is white)

pg_hooks def_hooks;
�� Default general hooks

�� ��scellaneous fields not to be altered by
app.
};

The follo��ng is a description for each field that you
can change directly:

max_offscreen — defines the max��um amount of memory,
in bytes, that can be used for offscreen bit map
dra��ng. The purpose of this field is to avoid
excessive, unreasonable offscreen bit maps for huge
text on high-density monitors.

max_block_size — defines the largest size for
contiguous text (HER��S Paige breaks down text into

blocks of max_block_size as the HER��S Paige object
grows).

��n��u��line���dth — pdefines the smallest ��dth
allowed, in pixels, for a line of text. The purpose of
this field is for HER��S Paige to decide when a portion
of a wrap area is too small to even consider placing
text.

def_tab_space — not used in version 1.3 and beyond. (�o
change default tab spacing, change
globals.def_par.def_tab_space).

line��rap_char through down_arro��char — defines all
the special characters recognized by HER��S Paige. Any
of these can be changed to something else if you don't
want the default values. See Warning belo�. See also
Double Byte Defaults under section 3.8.

text_brk_char — defines an alternate character to
delineate text blocks (HER��S Paige partitions large
blocks of text into smaller blocks; by default, a block
��ll break on a <CR> or <LF>, but if neither of those
are found in the text, the text_brk_char ��ll be
searched for). For additional information, see chapter
36, Anatomy of Text Blocks.

null_char — defines a special character that, if
inserted, merely causes word-wrap to recalculate and
the null_char itself is not inserted.

cr_invis_symbol through space_invis_symbol — define
all the character values to draw when HER��S Paige is
in "show invisibles" mode. Each character is
represented by a null-ter��nated Pascal string (first
byte is the length, followed by the byte(s) for the
character, followed by a zero). Note that these
characters can be zero, one or ��o bytes in length. See
also Double Byte Defaults under section 3.8.

flat_single_quote through right_double_quote - define
single and double quotation characters for "smart
quotes" ��plementation. The "flat" quote c�aracters
s�ou�d be t�e sta�dard ASCII c�aracters �or s��g�e a�d
doub�e quotes, w���e t�e "�e�t" and "right_" quote
characters are to be substituted for "smart quotes" if
that feature has been enabled.

elipse_symbol — contains the character to draw an
ellipsis “…" symbol. However, this character definition
has been provided only for future enhancement: the
current version of HER��S Paige does not use this
character for any built-in feature.

invis_font — defines the font to be used for dra��ng
invisibles. This is machine dependent. For Macintosh,
this is the QuickDraw font ID that gets set for
invisible characters. For ��ndows, this is a font
HANDLE (�hich you can alter by replacing it ��th you
own font HANDLE)

unknown_char — Contains the symbol to be used when
��porting unsupported characters. For example,
��porting a file ��th HER��S Paige's ��port extension
may include characters that to not cross over to any
available character set, in which case unknown_char
��ll be substituted.

WARNINGS

(���dows o��y) If you replace the invis_font member
��th your own font object, do not delete the object
that was there before, if any. Moreover, HER��S
Paige ��ll not delete your invis_font object
either, so you are responsible for deleting your
own object before your application quits.
The default machine-specific functions ��thin
HER��S Paige are assu��ng ASCII control codes for
the special character values in pg_globals (ASCII
chars < 20).

def_font, def_style, def_par — define the default
font, text and paragraph formatting, respectively.
Whenever you call pgNe�(), these three structures are
literally copied into the new pg_ref. Hence, to change
the default(s) for text formatting, you s��ply change
the members of these three structures prior to calling
pgNe�().

def_bk_color, trans_color — define the default
background colour to be used for dra��ng all text and
the colour that is considered "transparent",
respectively. The background colour is not necessarily
the same as the ��ndow's background colour (HER��S
Paige ��ll make the necessary adjus��ent if ��ndow
colour does not equal the pg_ref's background colour).
By "transparent" color is meant which colour is

considered the normal screen background colour (default
is white).

The purpose of defining the transparent colour is to
inform HER��S Paige when and if the background of its
dra��ng needs to be "erased" ��th a different colour
other than the regular background of the ��ndo�. If the
background colour for an HER��S Paige object is set to
the same value as trans_color in pg_globals, HER��S
Paige won't do any special color filling of background
since it assumes normal erasing of the ��ndow ��ll take
care of it (for instance, responding to W��PAIN�). If
HER��S Paige's background color is not the same as
trans_color, then the pg_ref's background shape ��ll
be pre-filled ��th a different color other than the
��ndow's default.

def_hooks — define the default function pointers to be
used for a pg_ref's general hooks. Essentially, pgNew
copies these pointers. (DSI and other developers can
change these defaults for special extensions).

Default Values

After you have called pgInit, the follo��ng defaults
are set for all the fields mentioned above:

Global Field
About the

field
��ndows Macintosh

max_offscreen
bit map size
(bytes)

48,000 48,000

max_block_size

max paragraph
size in
number of

characters

4096 4096

��n��u��line���dth in pixels 16 16

line��rap_char
carriage
return
character

0x0D 0x0D

soft_line_char
soft carriage
return char

0x0A 0x0A

tab_char tab char 0x09 0x09

hyphen_char
hard hyphen
char

0x2D 0x2D

soft_hyphen_char
soft hyphen
char

0x1F 0x1F

Global Field
About the

field
��ndows Macintosh

dec��al_char
dec��al point
char

0x2E 0x2E

bs_char
back space
(delete) char

0x08 0x08

lf_char
line feed
char

0x0C 0x0C

container_brk_char
container
break char

0x0E 0x0E

left_arro��char
left arrow
key

0x1C 0x1C

right_arro��char
right arrow
key

0x1D 0x1D

up_arro��char up arrow key 0x1E 0x1E

down_arro��char
down arrow
key

0x1F 0x1F

text_brk_char

alternative
carriage
return char

 (form
feed)

0x1B 0x1B

��d_delete_char
forward
delete key

0x7F 0x7F

elipse_symbol

displayed
when HER��S
Paige
encounters an
unknown
symbol

'.' 0x85

flat_single_quote
straight
apostrophe –
'

0x27 0x27

flat_double_quote
straight
double quote
– "

0x22 0x22

left_single_quote
curly left
quote – ‘

0x91 0xD4

right_single_quote
curly right
quote – ’

0x92 0xD5

left_double_quote
curly left
quotes – “

0x93 0xD2

right_double_quote
curly right
quotes – ”

0x94 0xD3

cr_invis_symbol carriage
return when

¶ (0xB6) ¶ (0xA6)

Global Field
About the

field
��ndows Macintosh

invisibles
are displayed

lf_invis_symbol

line feed
when
invisibles
are displayed

¼ (0xB5) ¼ (0xB9)

tab_invis_symbol
tab when
invisibles
are displayed

0x95 0x13

end_invis_symbol

end of
document when
invisibles
are displayed

× (0xB5) × (0xB0)

cont_invis_symbol

container
break when
invisibles
are displayed

| (0xA5) | (0xAD)

space_invis_symbol

space symbol
when
invisibles
are displayed

. (0x2E) . (0x2E)

invis_font
font in which
invisibles
are displayed

default
font*

0 (Chicago)

def_font
font (name)
used for
pgNe�()

“System”
Application
font

def_style
text format
used for
pgNe�()

Plain, 12
point

Plain, 12
point

def_par
paragraph
format used
for pgNe�()

Indents
all zero,
tab
spacing
24 pixels

Indents all
zero, tab
spacing 24
pixels

def_bk_color

background
color used to
fill page
area for all
pg_refs

white white

trans_color

color assumed
also to be
��ndow’s
background

white white

If the default font is zero, then HER��S Paige creates
a font object using the default found in pg_globals
record that was created ��th pgNew. If you want to
change this you can change the default font in the
pg_globals.

NO�� (�acintosh): The pgdf Resource: During
initialisation, the machine-specific code for Macintosh
searches for a special resource to deter��ne the
character defaults (above). If it does not find this
resource, the values given above are used. Hence, you
can change the defaults by changing the contents of
this resource:

TABLE #2 MACINIOSH RESOURCE TYPE & ID

Resource Type Resource ID

"pgdf' 128

The HER��S Paige package we provide should contain this
resource as well as a ResEdit template to change its
contents.

Double Byte Defaults

Each character default in pgGlobals can be "double
byte" such as Kanji, if necessary. Although this manual
references these defaults as "characters," in truth
these global values are ALL double-byte, that is they
are unsigned integers. An ASCII CR, for instance, is
considered to be 0x000D and not 0x0D, etc. To set a
double byte default, such as a Kanji dec��al for
instance, s��ply place the whole 16-bit value into the
appropriate global field.

��CH NO��: CR/LF Conversion

I have read all the stuff so far about carriage
return line feeds. What exactly do I have to do
to make sure my documents are portable be��een
the PC which uses <CR><LF>, and the Mac which
uses only a <CR>?

HER��S Paige normally formats text using only CR for
paragraph endings (NOT CR/LF), hence for documents
created from scratch on any of the platforms, where all
text has been entered by the user via the keyboard,
documents be��een platforms are generally portable ��th
respect to CR/LF or just CR.

The only t��e this can become even remotely an issue is
when raw text is inserted which contains both CR and
LF, which if left "as is" would cause HER��S Paige to
draw ��o line feeds for each paragraph ending (one for
CR and one for LF).

To avoid this situation, the NO_LF_B�� should be set as
one of the "flag" bits in pgNew (or, if the pg_ref has
already been created, NO_LF_B�� can be set by
callingpgGetAttributes, ORing NO_LF_B�� to the result
and setting that value ��th pgSetAttributes. By setting
this bit, HER��S Paige ��ll essentially ignore all LF
characters and they ��ll become virtually invisible.

See also technical note Carriage return/line feeds
causing problems.

3.9 Cloning an HER��S Paige Object

To create a new HER��S Paige object based on an
existing pg_ref's vis_area, page_area, exclude_area
and attributes, use the follo��ng:

(pg_ref) pgDuplicate (pg_ref pg);

FUNC��ON RESU��: This function returns a new pg_ref,
completely independent of, but using the same shapes
and attributes as, pg. No text is copied and the
default text formatting is used.

3.10 Storing Arbitrary References
and Structures

You can store any arbitrary long value or pointer into
a pg_ref any t��e you want, and ��th as many different
values as you want by using the follo��ng:

(void) pgSetExtraStruct (pg_ref pg, void PG_FAR
*extra_struct, long ref_id);
(void PG_FAR *) pgGetExtraStruct (pg_ref pg, long
ref_id);

By "storing" an arbitrary value ��thin a pg_ref is
meant that HER��S Paige ��ll save longs or pointers —

which only have significance to your application —
which can be retrieved later at any t��e.

To store such items, call pgSetExtraStruct, passing
your long (or pointer) in extra_struct and a unique
identification number in ref_id. The purpose of this
UID is to reference that item later in
pgGetExtraStruct.

However, if the value in ref_id is already being used
by an "extra struct" item ��thin pg, the old value is
overwritten ��th extra_struct. (Hence, that is how you
can "change" a value that had previously been stored).

To retrieve an item stored ��th pgSetExtraStruct, call
pgGetExtraStruct passing the wanted ID in ref_id
(�hich must be the same number given to unique_id for
that item originally given to pgSetExtraStruct).

See section 34.2, HER��S Paige "Handler" Functions.

��CH NO�� (Removing ExtraStruct)

Why is there no pgRemoveExtraStruct()?

Probably because of the way it was ��plemented and what
it is/was intended for, it doesn't make sense to do a
"remove."

An "extra struct", as far as HER��S Paige is concerned,
is a single element of an array of longs. Each of these
longs are treated as refcon values that an application
can use for whatever.

Literally, the list of extra structs are maintained
internally as long[n] where n is the number of extra
structs added.

The array number itself, e.g. 0, 1, 2, etc., is the "ID
number" of the extra struct. That is what makes each
one unique, really. Hence you can see why we could not
really "delete" one of these elements since that would
cause all subsequent extra struct elements to be a
different "ID" number.

For example, if a pg_ref holds elements 0, 1, 2, 3, and
4 (all ��th same corresponding ID numbers), deleting 2
would make 3 become 2 and 4 become 3.

We realise a more elaborate system could have been
��plemented that contained indirect pointers, or some
other scheme that is closer to what (I think) you are
suggesting, so extra structs could be deleted.

But, the original purpose of this feature was s��ply to
add extra refCon possibilities. It ��ght have made more
sense had we called the function something like
pgReserveAnotherLongRefCon.

Finding a Unique ID

If you aren't sure whether or not an ID number is
unique for a pg_ref, or if you s��ply want to get an ID
number that you know is unique, call the follo��ng:

(long) pgExtraUniquelD (pg_ref pg);

The number this function returns ��ll a��ays be
positive and is guaranteed to have not yet been used
for pgSetExtraStruct ��th this pg_ref.

CAU��ON: HER��S Paige has no idea what you are storing
��th pgSetExtraStruct, and therefore ��ll not dispose
any memory allocations that you ��ght have attached to
"extra struct" storage. Be sure to dispose any such
allocations before disposing the pg_ref or you ��ll end
up ��th a memory leak.

NO��: Once you have stored something ��th
pgExtraStruct, that item (and unique reference) stays
in the pg_ref and never gets "removed" unless you
explicitly do another pgSetExtraStruct using the same
ID (in which case the previous item associated ��th
that ID ��ll get overwritten).

EXAMPLE (How to use and extra struct)

/* This function adds a ��ndowPtr to the HER��S
Paige object using

the extra struct feature and returns the ID of
that struct */

short add���ndo��to_pg (pg_ref pg, ��ndowPtr ��ptr)
{

short unique_id;

unique_id = pgExtraUniqueID(pg);
pgSetExtraStruct(pg, ��ptr, unique_id);
return unique_id;

}

/* Later, the extra struct can be accessed using the
ID returned above. */

��ndowPtr ��ndow���th_pg;
��ndow���th_pg = pgGetExtraStruct(pg, unique_id);

3.11 Cursor Utilities

If you want to know if a point (co_ordinate) sits on
top of editable text (to change the mouse symbol to
something else, for instance), call the follo��ng:

(short) pgPtInView (pg_ref pg, co_ordinate_ptr
point, co_ordinate_ptr offset_extra);

Given an arbitrary ��ndow coördinate (relative to that
��ndow's coördinate syste�) in point, pgPtInView
returns information about what part of pg, if any,
includes that point.

The offset_extra parameter is an optional pointer to a
coördinate that holds values to temporarily offset
everything in pg before checking intersections of the
point. In other words, if offset_extra is non-null,
this visual area in pg ��ll first be offset by
offset_extra.h and offset_extra.v amounts before
checking the containment of point in vis_area; the wrap
area ��ll also be offset by this amount before checking
if the wrap area contains the point, and so on.

If offset_extra is a null pointer, everything is
checked as-is.

FUNC��ON RESU��: The function result ��ll be a word
containing different bits set (or not) indicating what
intersects the point as follows:

#define W��HIN_VIS_AREA 0x0001 ��
Point ��thin vis_area
#define W��HIN��RAP_AREA 0x0002 ��

Point ��thin page_area
#define W��HIN_EXCLUDE_AREA 0x0004 �� Point
��thin exclude_area
#define W��HIN���XT
0x0008 �� Point ��thin actual text
#define W��HIN_REPEA��AREA 0x0010 �� Point is
in repeating gap of page
#define W��HIN_LE���AREA 0x0020 ��
Point is left of document
#define W��HIN_RIGH��AREA 0x0040 ��
Point is right of document
#define W��HIN��OP_AREA 0x0080 ��
Point is above top of document

#define W��HIN_BOTTO��AREA 0x0100 �� Point is
below bottom of document

W��HIN_VIS_AREA means the point is ��thin the bounding
area of vis_area.

W��HIN��RAP_AREA means the point is somewhere ��thin
the page_area shape.

W��HIN_EXCLUDE_AREA means the point is somewhere ��thin
the exclude_area.

W��HIN���XT means the point is somewhere ��thin "real"
text. This differs from W��HIN��RAP_AREA since it is
possible to have a large page_area shape ��th very
little text (in which case, W��HIN���XT ��ll only be
set if the point is over the portion that displays
text).

Each bit gets set no���thstanding the other settings.
For example, W��HIN_EXCLUDE_AREA and W��HIN��RAP_AREA
can both be set, even though text cannot flow into the
exclude_area.

Another setting that can be returned is W��HIN���XT set
but W��HIN_VIS_AREA not set, which really means the
point is over text that falls outside of vis_area. The
function result is s��ply the setting for each case
individually, so it is your responsibility to exa��ne
the combination of bits to deter��ne what action you
should take, if any.

NO��: The best t��e to turn the cursor to an "i-beam"
is when pgPtInView returns W��HIN_VIS_AREA and

W��HIN���XT at the same t��e and pg is in an active
state.

3.12 Getting Text Size and Height

To obtain the total size of text in an HER��S Paige
object (in bytes), call the follo��ng:

(long) pgTextSize (pg_ref pg);

FUNC��ON RESU��: This function returns the total size
of text (byte size) in pg.

To find out how "tall" the text is, call the follo��ng:

(long) pgTota��extHeight (pg_ref pg, pg_boolean
paginate)

FUNC��ON RESU��: This function returns the distance
be��een the top of the first line of text to the bottom
of the lowest line, in pixels.

NO��: The lowest line is not necessarily the last line
in the document: had pg had a non-rectangular shape,
such as parallel columns, the last (ending) line could
have been vertically above some of the lines in other
areas of the shape. Hence, pgTota��extHeight really
returns the bounding height be��een the highest and
lowest points.

If paginate is TRUE, all the text from top to bottom
is recalculated (�ord wrap recomputed), if necessary.
If paginate is FALSE, the total text height returned
is computed ��th the latest information available
��thin pg. In essence, this would be HER��S Paige's
"best guess."

For example, suppose a large document changed from 12
point text to 18 point text and you wanted to know how
tall the document had become. To get the exact height,
to the nearest pixel, you should pass TRUE for
paginate, other��se HER��S Paige ��ght not have
computed all the text to return an exact answer.
However, computing large amounts of text can consume a

great deal of t��e, which is why the choice to
"paginate" or not has been provided.

NO��S:

1. If you ��ll be using the built-in scrolling support
in HER��S Paige, you probably never need to get the
height of an HER��S Paige object — see chapter 11,
All About Scrolling. If you do need an exact height
for other reasons, see section 24.12, Getting the
Max��um Text Bounds.

2. The height returned from this function does not
consider any extra structures that aren't embedded
in the text strea�. For example, if you have
��plemented headers, footers, footnotes, or any
other page "ornaments" their placement ��ll not be
considered in the text height computation.

4 Virtual Memory

4.1 Initialising Virtual Memory

HER��S Paige supports a "virtual memory" system in
which memory allocations made by HER��S Paige can be
spooled to a disk file in order to free memory for new
allocations.

However, your application must explicitly initialise
HER��S Paige virtual memory before it is operational;
this is because disk file reading and writing is
machine-dependent, hence your application needs to
provide a path for memory allocations to be saved.

To do so, call the follo��ng function somewhere early
when your application starts up and after pgInit:

��nclude "pgMemMgr.h"
void InitVirtua��emory (pg��globals_ptr globals,
purge_proc purge_function, long ref_con);

The globals parameter is a pointer to a field in
pg_globals (same structure you gave to pgInit). For
example, if your pg_globals structure is called
paige_rsrv, this parameter would be passed as follows:

&paige_rsrv.�e��globals

Parameters

purge_function — a pointer to a function that ��ll
be called by HER��S Paige to write (save) and purge
memory allocations and/or to read (restore) purged
allocations. However, HER��S Paige ��ll use its own
function for purge_proc if you pass a null pointer
for purge_proc. Other��se, if you need to write
your own, see Providing Your Own Purge Function
under section 4.2 for the definition and
explanation of this function.
ref_con — contains the necessary information for
the purge function to read and write to the disk

and what you pass to ref_con depends on the
platform you are operating and/or whether or not
you are using the standard purge function
(purge_function null).

How to set up virtual memory (�acintosh)

�� This function inits VM by setting up a temp file
in System folder

pg_globals paige_rsrv; �� Same globals as given to
pgInit, pgNew
void init_paige_��(void)
{

SysEnvRec theWorld;
sysEnvirons(2, ��heWorld); �� Get

system info for "folder"

�� Get whatever temp file name to use (in
this example I get a ��R�)

GetIndString(temp_file_name, ��SC_��RINGS,
T��P_FILE_��R);

Create(temp_file_name, theWorld.sysVRefNu�,
T��P_FILE��YPE);

FSOpen(temp_file_name, theWorld.SysVRefNu�,
&���file);

InitVirtua��emory(�paige_rsrv.�e��globals,
NULL, ���file);

�� Leave temp file open until quit (see
belo�)
}

�� Before quit, "shut down" VM by closing temp file

void uninit_paige_��(void)
{

FSClose(paige_rsrv.purge_ref_con); ��
VM file stored here
}

4.2 The scratch file

Assu��ng you ��ll be passing a null pointer to
purge_proc, letting HER��S Paige use the built-in purge
function, the steps to initialise virtual memory fully
are as follows:

1. First, call pgMe��tartup to initialise the HER��S
Paige Memory Allocation manager, and pass the
max��um memory you want HER��S Paige using to
max��emory before allocations begin purging. If you
want HER��S Paige to use whatever is available,
pass 0 for max��emory (see pgMe��tartup in the
index for additional information).

2. Create a file that can be used as a "temp" file and
open it ��th read/write access.

3. Call InitVirtua��emory, passing the file reference
from §2 in the ref_con parameter. (For Macintosh
platfor�, this should be the file refnum of the
opened file; for ��ndows platfor�, this should be
the int returned from OpenFile or Ge��empFile,
etc.).

4. Keep the scratch file open until you shut down the
Allocation Manager ��th pgMe��hutdown.

NO��: It is your responsibility to close and/or delete
your temp file after your application session ��th
HER��S Paige has ter��nated.

If you are writing your own purge function, however,
ref_con can be anything you require to initialise
virtual memory I/O, such as a file reference or a
pointer to some structure of your own definition.

After calling the above function, memory allocations
��ll be "spooled" to your temp file as necessary to
create a virtual memory environment.

The value originally passed to pgMe��tartup —
max��emory — dictates the max��um memory available for
the HER��S Paige Allocation Manager before allocations
must be purged. This is a logical partition, not
necessarily physical (i.e., you ��ght have 2 GiB
available but only want HER��S Paige to use 50 ��B, in
which case you would pass 52428800 to max��emory in
pgMe��tartup).

Providing Your Own Purge Function

In most cases you can use the purging utilities
provided in the Allocation Manager, see section 25.15,
Purging Utilities. If necessary, however, you can
bypass the built-in memory purge function; for complete
details, see section 25.19, Writing Your Own Purge
Function.

5 Cut, Copy, Paste

This section explains how to ��plement Cut, Copy, Paste
and Undo, including additional methods to copy "text
only."

5.1 Copying and Deleting

(pg_ref) pgCut (pg_ref pg, select_pair_ptr
selection, short draw��ode);
(pg_ref) pgCopy (pg_ref pg, select_pair_ptr
selection);
(void) pgDelete (pg_ref pg, select_pair_ptr
delete_range, short draw��ode);

To perform a "Cut" operation — for which text is copied
and then deleted — call pgCut. The selection parameter
is an optional pointer to a pair of text offsets from
which to delete text. This is a pointer to the
follo��ng structure:

typedef struct
{

long begin; �� Beginning offset of some
text portion

long end; �� Ending offset of some
text portion
}
select_pair, *select_pair_ptr;

The begin field of a select_pair defines the beginning
text offset and the end field defines the ending
offset. Both offsets are byte counts, not character
counts. Text offsets in HER��S Paige are zero-indexed
(first offset is zero). The last character "end" is
included in selection.

FIGURE 3 SELEC��ON BEGIN AND END EXPLAINED

NO��: All offsets are byte counts. In the case of
characters, they are each one byte.

If the selection parameter in pgCut is a null pointer,
the current selection in pg is used instead (�hich is
usually want you want).

FUNC��ON RESU��: The function result of pgRef is a
ne��y created HER��S Paige object containing the copied
text and associated text formatting. You can then pass
this pg_ref to pgPaste, belo�.

draw��ode can be the values as described in Draw Modes
under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen in
"OR" mode
bits_xor �� Copy offscreen in
"XOR" mode

NO��S:

1. The pg_ref returned from pickup is a "real" HER��S
Paige object, which means you need to eventually
dispose of it properly using pgDispose.

2. Shapes from the source pg_ref are used to "clone"
the resulting pg_ref from a copy or cut regardless
of the selection range. For example, if the source
pg_ref that gets copied contained a page_area

shape ��th d��ensions 10, 10, 580, 800, the
resulting pg_ref ��ll have the same pg_area shape.
The same is true for vis_area and exclude_area.

CAU��ON: If there is nothing to copy (no selection
range exists), both pgCut and pgCopy ��ll return
M���NULL.

CAU��ON: It is ��se never to display the resulting
pg_ref unless you first set a default graphics device
to target the display. For example, doing a pgCopy then
dra��ng to a "clipboard" ��ndow later could result in a
crash. This can happen if the original ��ndow
containing the copied pg_ref has been closed (rendering
an invalid ��ndow attached to the copied reference).
Hence, before dra��ng to such a "clipboard", use
pgSetDefaultDevice. See Setting a device under section
3.4.

The pgCopy function is identical to pgCut except that
no text is deleted, only a pg_ref is returned which is
the copy of the specified text and formatting and no
draw��ode is provided (because the source pg_ref
remains unchanged).

HER��S Paige provides excellent error checking for out-
of-memory situations ��th pgCopy. See chapter 26,
Exception Handling.

The pgDelete function is the same as pgCut in every
respect except that a "copy" is neither made nor
returned. Use this function when you s��ply want to
delete a selection range but not make a copy (such as a
C�ear command from a menu).

5.2 Pasting

(void) pgPaste (pg_ref pg, pg_ref paste_ref, long
position, pg_boolean text_only, short draw��ode);

The pgPaste function takes paste_ref (typically
obtained from pgCut or pgCopy) and inserts all of its
text into pg, beginning at text offset position (�hich
is a byte offset). The paste_ref's contents remain
unchanged.

The position parameter, however, can be
CURREN��POS���ON (value of -1) in which case the paste
occurs at the current insertion point in pg. After the
paste the insertion point advances the number of
characters that were inserted from paste_ref.

If text_only is TRUE, only the text from paste_ref is
inserted — no text formatting is transferred.

draw��ode can be the values as described in Draw Modes
under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen,
"OR" mode
bits_xor �� Copy offscreen,
"XOR" mode

NO��S:

1. If there is already selected text in pg (the target
pg_ref), it is deleted before the paste occurs.

2. Only text and styles are affected in the target
pg_ref — shapes remain unchanged.

��CH NO��: pgPaste custom styles

I need to know when a custom style gets
inserted into a particular pg_ref. That is, if
a style is duplicated in an undo or clipboard
context, I need to know when the style is
inserted into the style table for the "real"
pg_ref.

There are several ways to do this. Which method you
choose depends on when you need to kno�, i.e. if you
need to know the instant it occurs versus kno��ng
somewhere in your app follo��ng a pgPaste or pgUndo.

By "instant it occurs" I mean when processing a style
��th one of the hooks, for instance. If that's what you
need, one good way is to use the duplicate function. By
mere virtue of getting called at all you know that
HER��S Paige is adding that style for one reason or
another.

If you need to find out if that style exists at any
arbitrary t��e, one way is to use pgFindStyleInfo. This
function searches all style change(s) in the text to
find the first occurrence of a particular style. One
useful feature in pgFindStyleInfo is that you can set
up a "mask" to only compare certain specific fields in
your style. I assume your custom style ��ll contain
some kind of unique value for you to identify it, in
which case this function is probably exactly what you
want.

Then there is the "hack" method which looks dangerous,
but isn't really. This method is to look at the whole
style info list directly, which should remain
compatible ��th all future HER��S Paige versions a�d it
is even portable be��een ��ndows and other platforms!
This is done as follows:

paige_rec_ptr pg_rec; �� actual struct
inside pg_ref
style_info_ptr styles; �� ��ll be pointer to styles
long nu��styles; ��
��ll be number of styles avail

pg_rec = UseMemory(pg); �� do this to get paige
struct
nu��styles = Ge��emorySize(pg_rec �� t_formats);
�� number of style_info

styles = UseMemory(pg_rec �� t_formats);
�� points to first style

/* At this point: styles = pointer to first
style_info and nu��styles contains number of styles.
Hence, you can get next style as styles[1],
��styles, etc. To find your particular style, just
walk through and look for it. */

�� Once you're through, you MU�� do:

UnuseMemory(pg_rec��t_formats);
UnuseMemory(pg);

5.3 Copying Text Only

text_ref pgCopyText (pg_ref pg, select_pair_ptr
selection, short data_type);

FUNC��ON RESU��: This function returns a memory
allocation containing a copy of the text in pg,
beginning at the specified offset as follows: if
selection is non-null, it is used to deter��ne the
selection range (for information about select_pair
structure, see section 4.1, Copying and Deleting). If
selection is a null pointer, the current selection
range is used.

NO��: The memory_ref returned from pgCopyText ��ll
have a "record size" set to one byte. In other words, a
Ge��emorySize() ��ll return the number of bytes copied
(�hich ��ght be different to the number of characters,
since HER��S Paige can in principle handle multibyte
characters).

The data_type parameter specifies which type of text to
copy which can be one of the follo��ng:

typedef enum
{

all_data,
�� Return all data

all_text_chars,
�� All text that is writing script

all_roman,
�� All Latin ASCII chars

all_visible_data,
�� Return all visible data

all_visible_text_chars, �� All visible text
that is writing script

all_visible_roman
�� All visible Latin ASCII chars
};

If data_type is all_data, every byte in the specified
range is copied; if all_text_chars, all single-byte
text is copied (�hich excludes only custom characters
that aren't really "text"); for all_roman, only ASCII
characters of Latin script are copied (as opposed to
some other script such as Chinese or Arabic).

The function result is typed as a text_ref, which is a
memory allocation created by the HER��S Paige
Allocation Manager.

NO��: "Single byte text" in the above sense does not
refer to single or double byte scripts such as Roman
vs. Kanji. The all_text_chars data type ��ll in fact
include double-byte script. The only type excluded in
this case is embedded graphics, controls, or some other
custo��sed text stream that really isn't text.

See also section 24.5, Exa��ne Text.

��CH NO��: No zeros at the end of pgCopyText

I got my text in a text_ref ��th pgcopyText,
but there is no 0 at the end!

1. Can I s��ply add a zero at the end to
create a zero-del���ted string?

2. How do I know where the end is?

Point one: yes, but you �ust be careful since the
memory_ref is only guaranteed to have allocated the
number of bytes in the selection sent to pgCopyText. So
if you want to append a zero, you should use
AppendMemory, then put in the value.

memory_ref the_text;
the_text = pgCopyText(pg, ��he_selection, all_data);

/* put a zero on the end so the parser doesn't walk
off the end of the text */

AppendMemory(the_text, sizeof(pg_char), true);
UnuseMemory(the_text);

Point ��o: you can find the size of the text ��th
Ge��emorySize(), which ��ll return the number of
"records", which, in this case, ��ll be the number of

characters. Alternatively, you know the number of
characters going into pgCopyText by kno��ng the
selection range(s).

6 Undo and Redo

HER��S Paige provides a variety of functions to fully
support several kinds of "undo" for most situations.
HER��S Paige provides a convenient method of building
custom undos which can be incorporated into your own
application as well.

6.1 Concept of Undo

The concept of HER��S Paige "undo" support is as
follows: Before you do anything to an HER��S Paige
object that you want to be undoable, call pgPrepareUndo
if you are about to do a pgCut, pgDelete, pgPaste, or
any style, font or paragraph formatting change. The
function result can then be given to pgUndo which ��ll
cause a reversal of what was performed.

For setting up an undo for pgCut or pgDelete, pass
undo_delete for the verb parameter and a null pointer
for paste_ref, for setting up an undo for pgPaste,
pass undo_paste for the verb and the pg_ref you intend
to paste from in paste_ref. For formatting changes
(setting different fonts and styles or paragraph
formats), pass undo_format for verb and null pointer
for paste_ref.

6.2 Prepare Undo

To ��plement these features you must make the follo��ng
function call prior to perfor��ng something that is
undoable:

(undo_ref) pgPrepareUndo (pg_ref pg, short verb,
void PG_FAR *insert_ref);

FUNC��ON RESU��: This function returns a special memory
allocation which you can give to pgUndo (belo�) to
perform an Undo.

The verb parameter defines what you are about to
perfor�, which can be one of the follo��ng:

typedef enum
{

undo_none,
�� Null undo ("can't undo")

undo_typing,
�� Undo key entry except bksp and forward delete

undo_backspace, ��
Undo backspace key

undo_delete,
�� Undo clear/cut/delete

undo_��d_delete, ��
Undo forward delete

undo_paste,
�� Undo paste/insert

undo_format,
�� Undo text style, para format, or font

undo_insert,
�� Undo some other form of insertion

undo_page_change, ��
Undo page area change

undo_vis_change, ��
Undo vis area change

undo_exclude_change, �� Undo exclusion
area change

undo_doc_info, ��
Undo setDocInfo change

undo_embed_insert, �� Undo
embed_ref insertion

undo_app_insert ��
Undo insert ��th position parameter
};

About to per�or� means that you are about to do
something you ��sh to be undoable later on. This
includes perfor��ng a deletion, insertion, or text
formatting change of any kind.

6.3 The insert_ref Parameter

For undo_paste, insert_ref must be the pg_ref you
intend to paste (the source "scrap"); for undo_insert,
insert_ref must be a pointer to the number of bytes to
be inserted.

The undo_app_insert verb is identical to undo_insert
except you must specify the insert location

(undo_insert assumes the current text position). To do
so, insert_ref must be a pointer to an array of ��o
long words, the first element should be the text
position to be inserted and the second element the
insertion size, in bytes.

For undo_typing, undo_backspace and undo_��d_delete,
insert_ref should be the previous undo_ref you received
for any pgPrepareUndo — or NULL if none.

NO��: insert_ref, in this case, is an undo_ref — not a
pointer to one — so you must coerce the undo_ref as
(void PG_FAR *).

For all other undo preparations, insert_ref should be
NULL.

Insert 100 bytes

If you are about to insert, say, 100 bytes, you would
call pgPrepareUndo as follows:

long length;
length = 100;
pgPrepareUndo(pg, undo_insert, (void PG_FAR *)
��ength);

/* The follo��ng function inserts a key into pg and
returns the undo_ref that can be used to perform
"Undo typing". The last_undo is the previous
undo_ref, or M���NULL if none. */

undo_ref insert���dth_undo (pg_ref pg, pg_char
the_key, undo_ref last_undo)
{

undo_reffunction_result;

if (the_key �� ' ') �� if control char
{

if(the_key �� ��D_DEL���_CHAR)
function_result =

pgPrepareUndo(pg, undo_��d_delete, (void PG_FAR *)
last_undo);

else
function_result =

pgPrepareUndo(pg, undo_typing, (void *) undo);
}

else if (the_key �� BACKSPACE_CHAR)
function_result = pgPrepareUndo(pg,

undo_backspace, (void *) undo);
pgInsert(pg, (pg_char_ptr) ��he_key,

sizeof(pg_char), CURREN��POS���ON, key_insert��ode,
0, best��ay);

return function_result;
}

For undo_paste, insert_ref must be the pg_ref you are
about to paste (same as before).

For all other undo verbs, insert_ref is not used (so
can be NULL).

6.4 Additional Undo verbs

undo_page_change can be used before changing the page
shape, undo_vis_change before changing the visual area,
and undo_exclude_change before changing the exclusion
area.

The undo_doc_info verb can be given before changing
anything in pg_ref's doc_info. For example, you could
do “Undo Page Setup” ��th this undo verb.

The undo_embed_insert verb can be used before
inserting an embed_ref (see chapter on ��bedded
Objects). Note, unlike undo_insert and
undo_app_insert, the insert_ref parameter should be
NULL for undo_embed_insert.

Undoing "Containers"

When you use undo_page_change, HER��S Paige ��ll set up
an undo (and restore upon redo) both "container"
rectangles and the associated refcons. You can
therefore perform a full Undo Container Change.

6.5 Perfor��ng the Undo

To perform the actual Undo operation, pass an undo_ref
to the follo��ng:

(undo_ref) pgUndo (pg_ref pg, undo_ref ref,
pg_boolean requires_redo, short draw��ode);

The ref parameter must be an undo_ref obtained from
pgPrepareUndo.

If requires_redo is TRUE, pgUndo returns a new
undo_ref which can be used for a "Redo".

For example, if the undo_ref passed to this function
performed an "Undo Cut," and requires_redo is given as
TRUE, the function ��ll return a new undo_ref which,
if given to pgUndo again, would perform a "Redo Cut."
Undo/Redo results can be toggled back and forth this
way virtually forever.

draw��ode can be the values described in Draw Modes
under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen,
"OR" mode
bits_xor �� Copy offscreen,
"XOR" mode

Generally, if you want the HER��S Paige object to re-
dra�, pass best��ay for draw��ode.

NO��S

1. pgUndo returns a new undo_ref, which is a
completely different allocation to the undo_ref you
passed to it. It is your responsibility to dispose
all undo_refs.

2. When an Undo is performed, it does not matter what
the selection point (or selection range) is in pg
at the t��e — pgUndo ��ll restore whatever
selection range(s) existed at the t��e the undo_ref

was created. For example, if the user performs an
action for which you created an undo_ref, such as a
Paste, and then he selects some other text or
clicks at a different location, pgUndo still works
correctly, given that the original insertion point
for the Paste is recorded in the undo_ref.

6.6 Disposing undo_refs

Once you are through using an undo_ref, dispose it by
calling the follo��ng function:

(void) pgDisposeUndo (undo_ref ref);

The ref parameter must be a valid undo_ref (received
from pgPrepareUndo or pgUndo); or, ref can be
M���NULL (in which case pgDisposeUndo() does nothing).

NO��S

1. M���NULL is allowed intentionally, so that you can
blindly pass your application's last "undoable"
operation that can be set initially to M���NULL.

2. There are a few cases where you should not dispose
an undo_ref — see follo��ng.

Disposing the Previous Prepare-Undo

If you are ��plementing single-level undo support (user
can only undo the last operation), you would normally
need to dispose the "old" undo_ref (the one returned
from the previous pgPrepareUndo()) before preparing for
the next undo. For undo_typing, undo_��d_delete, and
undo_backspace, you must not dispose the "old"
undo_ref — these are the lone exceptions to the
"dispose-old-undo" rule.

The reason for this is that you give HER��S Paige the
"old" undo_ref as the insert_ref parameter; for
undo_typing, undo_backspace, and undo_��d_delete, the
undo_ref given in insert_ref is either disposed or
returned back to you as the function result.

Never dispose the "previous" undo_ref when preparing
for any of these "character" undos (undo_typing,

undo_backspace and undo_��d_delete). In all other
cases, it is OK to dispose the previous undo_ref.

6.7 Undo Type

short pgUndoType (undo_ref ref);

This returns what type of undo_ref ��ll perfor�.

FUNC��ON RESU��: The function returns one of the undo
verbs listed above under pgPrepareUndo, or a negative
complement of a verb.

If the undo_ref is intended for a redo (returned from
pgUndo, the verb ��ll be its negative complement. For
example, if pgUndoType() returns undo_paste, a call to
pgUndo() would essentially perform a "Redo Paste".

A good use for this function is to set up a menu item
for the user to indicate what can be undone.

NO��

If you want to record more information about an Undo
operation than the undo verbs listed above, use
pgSetUndoRefCon, of which an explanation follows.

6.8 Undo RefCon

(void) pgSetUndoRefCon (undo_ref ref, long refCon);
(long) pgGetUndoRefCon (undo_ref ref);

These ��o functions allow you set (or get) a long
reference inside an undo_ref.

The ref parameter must be a valid undo_ref; for
pgSetUndoRefCon, refCon can be anything.
pgGetUndoRefCon returns whatever has been set in ref.

6.9 Custo��sing Undo

HER��S Paige has a low-level hook for which you can use
to ��plement modified undo actions, or you can

completely custo��se an undo regardless of its
complexity. For more information, see chapter 27,
Custo��sing HER��S Paige.

6.10 Multilevel Undo

Your application can theoretically provide multiple-
level Undo support by s��ply preparing a "stack" of
undo_refs returned from pgPrepareUndo. Given that each
undo_ref is independent of the next (i.e. there are no
data structures ��thin an undo_ref that depend on other
undo_ref s or even pg_refs), an application can keep
as many of these around as desired to achieve "Undo of
Undo" and "Undo of Undo of Undo," etc.

Supporting a multilevel Undo (being able to undo the
last several operations) s��ply involves "stacking" the
undo_refs returned from pgPrepareUndo.

CAU��ON

When you set up for "Undo Typing" (be it for a regular
insertion, backspace or forward delete), HER��S Paige
��ght return the same undo_ref that was given to
pgPrepareUndo, and/or it ��ght delete the previous
undo_ref passed to the insert_ref parameter. In this
case, make sure you check for this situation and handle
it.

Example

/* The follo��ng code places consecutive undo_refs
into an array so multi-level "Undo" can be
supported. While we only show stacking a max��um of
16, it can of course be bigger. */

undo_ref stacked_refs[16];
short stack_index = 0; �� Begins
��th "no undos".

/* We call "PrepareUndo" from several places in the
progra�. The verb is the undo_verb to be performed.
*/

void PrepareUndo(pg_ref pg, short_verb)

{
undo_ref ne��undo, previous_undo;
previous_undo = M���NULL; �� Assume no

previous undo.
if (verb �� undo_typing �� verb ��

undo_��d_delete �� verb �� undo_backspace)
if (stack_index > 0) �� There is

a previous undo.
if (pgUndoType(stacked_refs[stack_index - 1]

�� verb))
otherparam =

stacked_refs[stack_index - 1];
ne��undo = pgPrepareUndo(pg, verb,

(void PG_FAR *))
previous_undo;

�� Check to see if HER��S Paige returned the
same undo_ref.

if(!previous_undo �� ne��undo ��
previous_undo_

��stack_index;

stacked_refs[stack_index - 1] = ne��undo;
}

7 CLIPBOARD SUPPORT

HER��S Paige provides a certain degree of automatic
support for the external clipboard, regardless of
platfor�.

7.1 Writing to the Clipboard

void pgPutScrap(pg_ref the_scrap, pg_os_type
native_format, short scrap_type);

This function writes the appropriate data to the
external clipboard for other applications to read
(including your own application). The data to be
written is contained in the_scrap; usually, the_scrap
would have been returned earlier from pgCopy() or
pgCut().

The scrap_type parameter indicates the preferred format
��thin pg to write to the clipboard. If scrap_type is
pg_void_scrap (value of zero), HER��S Paige ��ll write
whatever format(s) are appropriate, including its own
native type.

If scrap_type is non-zero, it must be one of
pg_native_scrap (the HER��S Paige native format),
pg_text_scrap (ASCII text), or pg_embed_scrap (the
contents of an embed_ref).

For pg_embed_scrap, only embed��ac_pict (for
Macintosh) and embed��eta_file (for ��ndows) are
supported, and only the first embed_ref found ��thin
the_scrap is written to the clipboard.

The native_format parameter should contain a platform-
appropriate identifier for a native HER��S Paige
format. For the Macintosh platfor�, pg_os_type is an
O��ype parameter; for the ��ndows platfor�, pg_os_type
is a WORD parameter (��n16) or int parameter (��n32).
Note that the value you place in native_format depends
upon the runt��e platfor�, as follows:

��ndows only

You must first register a new format type by calling
RegisterClipboardFormat(), then use that format type
for every call to pgPutScrap() and pgGetScrap(). The
name of this format type can be arbitrary; however, to
remain consistent we recommend the name used by the
custom control, "HER��S Paige".

NO��S

1. ��PORTANT! You must call OpenClipboard() before
calling pgPutScrap(), then call CloseClipboard()
after this function has returned. HER��S Paige
can't open the clipboard for you because it can't
assume there is a valid HWND available ��thin its
structure.

2. All data from the clipboard is copied, i.e. the
data ��thin the pg_ref is not owned by the
clipboard.

Macintosh only

For Macintosh, a pg_os_type is identical to O��ype.
The name of this format type can be arbitrary; however,
to remain consistent we recommend the name used by the
custom control, paig.

All Platforms

For both Macintosh and ��ndows platfor�, the clipboard
is cleared before any data is written. If it is
successful, the data can be read from the clipboard by
calling pgGetScrap(), belo�.

7.2 Reading from the Clipboard

pg_ref pgGetScrap (pg_globals_ptr globals,
pg_os_type native_format, embed_callback
def_embed_callback);

This function checks the external clipboard for a
recognisable format and, if found, returns a new pg_ref
containing the data; the pg_ref can then be passed to
pgPaste. This function ��ll work for both Macintosh and
��ndows-based applications.

The globals parameter must be a pointer to the HER��S
Paige globals structure (same structure used for
pgNe�()).

The native_format parameter should contain the same
native format type identifier that was given to
pgPutScrap(). For example, if running on a Macintosh,
the native_format ��ght be paig. On a ��ndows machine,
native_format would be the value returned from
RegisterClipboardFormat().

The def_embed_callback parameter is an optional
function pointer to an embed_ref callback function. The
purpose of providing this parameter is to initialise
any embed_refs read from the clipboard to use your
callback function. If def_embed_callback is NULL it
��ll be ignored (and the default callback used by
HER��S Paige ��ll be placed into any embed_refs read).

NO�� (��ndows)

��PORTANT: You must call OpenClipboard() before calling
pgGetScrap(), then call CloseClipboard() after you are
through processing the data. HER��S Paige can't open
the clipboard for you because it can't assume there is
a valid HWND available ��thin its structure.

Function Result

If a format is recognized on the clipboard, a new
pg_ref is returned containing the clipboard data. If no
format(s) are recognized, M���NULL is returned.

NO��

It is your responsibility to dispose the pg_ref
returned from this function.

7.3 Format Type Priorities

��ndows

HER��S Paige ��ll check the clipboard for format types
it can support in the follo��ng priority order:

1. HER��S Paige native format (taken from
native_format parameter).

2. Text (CF���XT).
3. Metafile (CF����AFILEPICT)
4. Bi��ap (CF_B��MAP)

If none of the above formats are found, pgGetScrap()
returns M���NULL.

Macintosh

HER��S Paige ��ll check the clipboard for format types
it can support in the follo��ng priority order:

1. HER��S Paige native format (taken from
native_format parameter).

2. Text (��XT).
3. Picture (PICT).

If none of the above formats are found, pgGetScrap
returns M���NULL.

7.4 Checking Clipboard Availability

pg_boolean pgScrapAvail (pg_os_type native_format);

This function returns TRUE if there is a recognisable
format in the clipboard. No data is read from the
clipboard — only the data availability is returned.

The native_format should be the appropriate clipboard
format type for the HER��S Paige native format (see
pgPutScrap() above).

This function is useful for controlling menu items,
e.g. disabling "Paste" if nothing is in the clipboard.

NO�� (��ndows)

��PORTANT: You should call OpenClipboard() before
calling pgScrapAvail(), then call CloseClipboard()
after this function has returned.

8 ��YLE BASICS

HER��S Paige maintains three separate text formatting
runs (series of text formatting changes): styles (bold,
italic, super/subscript, etc.), fonts (Helvetica,
T��es, etc.) and paragraph formats (indentations, tabs,
justification, etc.).

Each of these three formats can be changed separately;
any portion of text can be a combination of each of
these formats. Setting each of those is described in
detail in chapter 30, Advanced Styles. This chapter,
Sty�e Bas�cs, describes the easiest, quickest, and
s��plest way to set the style, font and paragraph
format you want.

NO��

Unlike a ��ndows font that defines the whole composite
format of text, the term �o�t as used in this chapter
generally refers only to a typeface, or typeface name.
HER��S Paige considers a �o�t to s��ply be a specific
fa��ly such as Candara, Consolas, Corbel, etc., while
distinguishing other formatting properties such as
bold, italic, underline, etc. as the text sty�e.

8.1 S��plified Fonts and Styles

The s��plest way to change the text in a pg_ref to
different fonts, style or color is to use the high-
level utility functions provided ��th HER��S Paige
version 3.0. These utilities provide a "wrapper" around
the lower-level HER��S Paige functions that change
styles, fonts and text colors.

The source code to the wrapper has also been provided
for your convenience, so you can alter them as
necessary to fit your particular application. Or, you
can exa��ne them as reference material as the need
occurs to apply more sophisticated stylization to your
document.

Installing the Wrapper

All the functions listed in this section can be
installed by including the source file pgHLevel.c in

your project and pgHLevel.h as its header file. These
functions can be called from both Macintosh and ��ndows
platforms and should work ��th all compilers that
support standard C conventions.

NO��

If your application requires more sophistication than
provided in this high-level wrapper, and/or if you
cannot use the wrapper for any reason, please see
chapter 30, Advanced Styles.

8.2 Selection Range

Most of the functions in this chapter require a
selection range, select_pairs and CURREN��SELEC��ON.

The selection range defines the range of text that
should be changed, or if you pass a null pointer the
current selection range (or insertion point) in pg is
changed.

typedef struct
{

long begin; �� Beginning offset of some
text portion

long end �� Ending offset of
some text portion
}
select_pair
typedef select_pair PG_FAR *select_pair_ptr;

The begin field of a select_pair defines the beginning
text offset and the end field defines the ending
offset. Both offsets are byte offsets, not character
offsets. Text offsets in HER��S Paige are zero-indexed
(i.e., the first offset is zero).

8.3 Changing / Getting Fonts

��ndows prototype

��nclude "pgHLevel.h"
void pgSetFontByName (pg_ref pg, LP��R font_name,
select_pair_ptr selection_range, pg_boolean redra�);

Macintosh prototype

��nclude "pgHLevel.h"
void pgSetFontByName (pg_ref pg, Str255 font_name,
select_pair_ptr selection_range, pg_boolean redra�);

This function changes the text in pg to the specified
font_name.

If selection_range is a null pointer, the text in pg
currently selected is changed (or, if nothing is
selected, the font is applied to the next key
insertion).

If selection_range is not null, it must point to a
select_pair record defining the beginning and ending
text offsets to apply the font. (See also section 8.2,
Selection Range).

If redraw is TRUE the changed text is redrawn if there
was a selected range affected.

NO��

Only the font is affected in the composite style of the
specified text; �.e., the text ��ll retain its current
point size and its other style attributes, ��th only
the font fa��ly changing.

Macintosh prototype

��nclude "pgHLevel.h"
pg_boolean pgGetFontByName (pg_ref pg, Str255
font_name);

��ndows prototype

file:///Users/nick/Documents/Hermes-Paige/Hermes-Paige/DOCS/8.2-selection-range

��nclude "pgHLevel.h"
pg_boolean pgGetFontByName (pg_ref pg, LP��R
font_name);

This function returns the font name that is applied to
the text currently highlighted in pg (or, if nothing is
highlighted, the font that applies to the current
insertion point is returned).

The font name is returned in font_name. If, however,
the text is selected and the text range has more than
one font, pgGetFontByName returns FALSE and font_name
is not certain.

8.4 Setting/Getting Point Size

Prototype (same for both Mac and ��ndows)

��nclude "pgHLevel.h"
void pgSetPointSize (pg_ref pg, short point_size,
select_pair_ptr selection_range, pg_boolean redra�);

This function changes the text point size to the new
size specified.

If selection_range is a null pointer, the text in pg
currently highlighted is changed (or, if nothing is
highlighted, the point size is applied to the next key
insertion).

If selection_range is not null, it must point to a
select_pair record defining the beginning and ending
text offsets to apply the size. (See also section 8.2,
Selection Range).

If redraw is TRUE, the changed text is redrawn if
there was a selected range affected.

NO��

Only the text size is affected in the composite style
of the specified text, i.e. the text ��ll retain its

current font fa��ly and its other style attributes;
only the point size changes.

Prototype (same for both Mac and ��ndows)

��nclude "pgHLevel.h"
pg_boolean pgGetPointsize (pg_ref pg, short PG_FAR
*point_size);

This function returns the point size that is applied to
the text currently selected in pg (or, if nothing is
selected, the point size that applies to the current
insertion point is returned).

The point size is returned in *point_size (�hich must
not be a null pointer). However, if the text is
highlighted and the text range has more than one size,
pgGetPointsize returns FALSE and *point_size is not
certain.

8.5 Setting/Getting Styles

Setting easy styles

Prototype (same for Mac and ��ndows)

��nclude "pgHLevel.h"
void pgSetStyleBits (pg_ref pg, long style_bits,
long set��hich_bits, select_pair_ptr
selection_range, pg_boolean_redra�);

This function changes the text style(s) to the new
style(s) specified. "Styles" refers to text dra��ng
characteristics such as bold, italic, underline, etc.

The style(s) to apply are represented in style_bits,
which can be a composite of any of the follo��ng
values:

��nclude "pgHLevel.h"
#define X_PLAIN���XT
0x00000000

#define X_BOLD_B��
0x00000001
#define X_��ALIC_B��
0x00000002
#define X_UNDERLINE_B��
0x00000004
#define X_OU��INE_B��
0x00000008

#define X_SHADO��B��
0x00000010
#define X_CONDENSE_B��
0x00000020
#define X_EX��ND_B��
0x00000040
#define X_DBL_UNDERLINE_B��
0x00000080
#define X��ORD_UNDERLINE_B�� 0x00000100
#define X_DOT��D_UNDERLINE_B�� 0x00000200

#define X_HIDDEN���X��B��
0x00000400
#define X_��RIKEOU��B��
0x00000800
#define X_SUPERSCRIP��B��
0x00001000
#define X_SUBSCRIP��B��
0x00002000
#define X_ROTA��ON_B��
0x00004000

#define X_ALL_CAPS_B��
0x00008000
#define X_ALL_LO��R_B��
0x00010000

#define X_��ALL_CAPS_B��
0x00020000
#define X_OVERLINE_B��
0x00040000
#define X_BOXED_B��
0x00080000
#define X_RELA��VE_POIN��B�� 0x00100000
#define X_SUPER��POSE_B��
0x00200000
#define X_ALL_��YLES
0xFFFFFFFF

The set��hich_bits parameter specifies which of the
styles specified in style_bits to actually apply; the

value(s) you place in set��hich_bits should s��ply be
the bits (as defined above) that you want to change.

The purpose of set��hich_bits is to distinguish be��een
a style you choose to force to "off" versus a style you
choose to remain unchanged.

For example, suppose you want to change all the
selected text to boldface but leave the other styles of
the text unchanged. To do so, you would s��ply pass
X_BOLD_B�� in both style_bits and set��hich_bits.

However, suppose you want to force the selected text to
str�ct�y bold (forcing all other styles off). In this
case, you would pass X_BOLD_B�� in style_bits and
0xFFFFFFFF (or X_ALL_��YLES) in set��hich_bits.

Also note for "plain" text (forcing all styles off),
pass X_PLAIN���XT for style_bits and X_ALL_��YLES for
set��hich_bits.

If selection_range is a null pointer, the text in pg
currently selected is changed (or, if nothing is
selected, the style(s) are applied to the next key
insertion).

If selection_range is not null, it must point to a
select_pair record defining the beginning and ending
text offsets to apply the style(s). (See also section
8.2, Selection Range).

If redraw is TRUE and a selected range is affected,
the changed text is redrawn.

NO��

Only the specified style attributes ��ll affect the
text, i.e. the selected text ��ll retain its font
fa��ly and point size, and all other style attributes
that are not specified in set��hich_bits.

NO�� (�acintosh)

The first six style definition bits are identical to
QuickDraw's style bits. You ��ght find it convenient to
s��ply pass the QuickDraw style(s) to this function.

Getting Style Example

��nclude "pgHLevel.h"

/* The follo��ng code sets the text currently
selected in pg to bold-italic but leaves all other
styles in the text alone. The text gets re-draw ��th
the changes if we had a highlight range.*/

long style_bits = X_BOLD_B�� | X_��ALIC_B��;
pgSetStyleBits(pg, style_bits, style_bits, NULL,
TRUE);

/* The follo��ng code sets the text currently
selected in pg to bold-italic but does NOT leave the
other styles alone (forces text to bold-italic and
turns off all other styles). The text gets re-drawn
��th the changes if we had a highlight range. */

long style_bits = X_BOLD_B�� | X_��ALIC_B��;
pgSetStyleBits(pg, style_bits , X_ALL_��YLES, NULL,
TRUE);

�� The follo��ng code changes all the selected text
to "plain"

pgSetStyleBits(pg, X_PLAIN���X�, X_ALL_��YLES,
NULL, TRUE);

Prototype (both Mac and ��ndows)

��nclude "pgHLevel.h"
void pgGetStyleBits (pg_ref pg, long PG_FAR
*style_bits, long PG_FAR *consistent_bits);

This function returns the style(s) that are applied to
the text currently highlighted in pg (or, if nothing is
highlighted, the style(s) that apply to the current
insertion point are returned).

The style(s) are returned in *style_bits (�hich must
not be a null pointer); the value of *style_bits ��ll
be a composite of one or more of the style bits as
defined in pgSetStyleBits (above).

The *consistent_bits parameter ��ll also get set to the
style(s) that remains consistent throughout the
selected text; if a style bit in consistent_bits is set
to a "1", that corresponding bit value in *style_bits
is the same throughout the selected text.

For example, if *style_bits returns ��th all 0's, yet
*consistent_bits is set to all 1's, the selection is
purely "plain text" (no styles are set). However, if
*style_bits returned all 0's but *consistent_bits was
�ot all 1's, the text is not "plain text," rather the
bits that are 0 in *consistent_bits reveal that style
is not the same throughout the whole selection.

NO��: The consistent_styles parameter must not be a
null pointer.

8.6 Setting/Getting Text Colour

��ndows prototypes

��nclude "pgHLevel.h"
void pgSe��extColor (pg_ref pg, COLORREF color,
select_pair_ptr selection_range, pg_boolean redra�);
void pgSetBKColor (pg_ref pg, COLORREF color,
select_pair_ptr selection_range, pg_boolean redra�);

Macintosh prototypes

��nclude "pgHLevel.h"
void pgSe��extColor (pg_ref pg, RGBColor *color,
select_pair_ptr selection_range, pg_boolean redra�);
void pgSe��extBKColor (pg_ref pg, RGBColor *color,
select_pair_ptr selection_range, pg_boolean redra�);

pgSe��extColor changes the foreground colour of text in
pg to the specified color; pgSe��extBKColor changes
the background colour of text in pg to the specified
color.

If selection_range is a null pointer, the text in pg
currently highlighted is changed (or, if nothing is

highlighted, the color is applied to the next key
insertion).

If selection_range is not null, it must point to a
select_pair record defining the beginning and ending
text offsets to apply the color. (See also section 8.2,
Selection Range).

If redraw is TRUE and a selected range was affected,
the changed text is redrawn.

NO��

Only the text colour is affected in the specified text,
i.e. the text ��ll retain its current font fa��ly,
point size and its other style attributes.

��ndows prototypes

��nclude "pgHLevel.h"
pg_boolean pgGe��extColor (pg_ref pg, COLORREF
PG_FAR *color);
pg_boolean pgGe��extBKColor (pg_ref pg, COLORREF
PG_FAR *color);

Macintosh prototypes

��nclude "pgHLevel.h"
pg_boolean pgGe��extColor (pg_ref pg, RGBColor
*color);
pg_boolean pgGe��extBKColor (pg_ref pg, RGBColor
*color);

pgGe��extColor returns the foreground colour that is
applied to the text currently highlighted in pg (or, if
nothing is highlighted, the colour that applies to the
current insertion point is returned); pgGe��extBKColor
returns the text background colour.

The colour is returned in *color (�hich must not be a
null pointer). However, if the text is highlighted and

the text range has more than one size, the function
returns FALSE and *color is not certain.

8.7 Style Examples

Setting styles (��ndows)

/* The follo��ng code shows an example of setting a
new point size, a new font and new style(s) taken
from a "LOGFONT" structure. All new text
characteristics are applied to the text currently
highlighted (or they are applied to the NEXT
pgInsert if no text is highlighted). Carefully note
that we do not "redraw" the text until the last
function is called, other��se we would keep
"flashing" the refresh of the text. */

��nclude "Paige. h"
��nclude "pgUtils.h"
��nclude "pgHLevel.h"

LOGFONT log_font; �� got this from
"ChooseFont" or whatever
long style_bits, set_bits; �� used for
pgSetStyleBits

�� Set font (by name)
pg SetFontByName(pg_log_font.lfFaceName, NULL,
FALSE);

�� Set point size
pg SetPointSize(pg,
pgAbsoluteValue((long)log_font.lfHeight, NULL,
FALSE);

�� Set style attributes:
style_bits = set_bits = 0;
if (log_font.l��eight �� ���BOLD)

style_bits |= X_BOLD_B��;
if (log_font.lfItalic)

style_bits |= X_��ALIC_B��;
if (log_font.lfUnderline)

style_bits |= X_UNDERLINE_B��;
if (log_font.lfStrikeOut)

style_bits |= X_��RIKEOU��B��;

�� Before setting the styles, check if we actually
have "plain text":
if (style_bits �� X_PLAIN���X�)

set_bits = X_ALL_��YLES;
else

set_bits = style_bits;

�� Note, this t��e we pass "TRUE" for redraw because
we are done:
pgSetStyleBits(pg, style_bits, set_bits, NULL,
TRUE);

Handling font menu (�acintosh)

��nclude "pgHLevel.h"
/* The follo��ng code assumes a "Font" menu (�hich
lists all available fonts), a "Style" menu
(containing Plain, Bold, etc.) and a "Point" menu
(��th 9, 12, 18 and 24 point values). Each example
assumes its respective menu has been selected by
user and "menu_item" is the item selected. */

/* For font menu: */
Str255 font;
GetIte�(Fon��enu, menu_ite�, font);
pgSetFontByName(pg, font, NULL, TRUE);

/* For style menu: */
long style_bits, set_bits;

s��tch (�enu_ite�)
{
case PLAIN_����:

style_bits = X_PLAIN���XT;
set_bits = X_ALL_��YLES;
break;

case BOLD_����:
style_bits = set_bits = X_BOLD_B��;
break;

case ��ALIC_����:
style_bits = set_bits =

X_��ALIC_B��;
break;

case UNDERLINE_����:
style_bits = set_bits =

X_UNDERLINE_B��;

break;
case OU��INE_����:

style_bits = set_bits =
X_OU��INE_B��;

break;
case SHADO������:

style_bits = set_bits =
X_SHADO��B��;

break;
}

pgSetStyleBits(pg, style_bits, set_bits, NULL,
TRUE);

�� Setting point size

short pointsize;
s��tch (�enu_ite�)

{
case PT9_����:

pointsize = 9;
break;

case P��2_����:
pointsize = 12;
break;

case P��8_����:
pointsize = 18;
break;

case PT24_����:
pointsize = 24;
break;

}

8.8 Changing pg_ref style defaults

Changing the defaults of the pg_ref is done just after
pgInit. Changing the defaults is shown in section 3.3,
A Different Default Font, Style, Paragraph.

8.9 Changing Paragraph Formats

Changing the paragraph format applied to text range(s)
requires a separate function call since paragraph
formats are maintained separate from text styles and
fonts.

To set one or more paragraphs to a different format,
call the follo��ng:

(void) pgSetParInfo (pg_ref pg, select_pair_ptr
selection, par_info_ptr info, par_info_ptr mask,
short draw��ode);

This function is a��ost identical to pgSetStyleInfo or
pgSetFontInfo except a par_info record is used for
info and mask.

The other difference is that pgSetParInfo ��ll a��ays
apply to at least one paragraph: even if the selection
"range" is a single insertion point, the whole
paragraph that contains the insertion point is
affected.

The selection and draw��ode parameters are
functionally identical to the same parameters in
pgSetStyleInfo (see "Changing Styles" and "Draw
Modes"), except whole paragraphs are changed (even if
you specify text offsets that do not fall on paragraph
boundaries). (For more information, v�de section 8.2,
Selection Range, and chapter 10, All About Selection).

For detailed information on par_info records—and what
fields you should set up—see "par_info".

NO��

If you want to set or change tabs, it is more efficient
(and less code) to use the functions in chapter 9, Tabs
and Indents.

(long) pgGetParInfo (pg_ref pg, select_pair_ptr
selection, pg_boolean set_any��atch,
par_info_ptrinfo, par_info_ptr mask);

This function returns paragraph information for a
specific range of text.

If selection is a null pointer, the information that is
returned applies to the current selection range in pg
(or the current insertion point); if selection is non-
null, pointing to select_pair record, information is

returned that applies to that selection range (for
information about select_pair pointer under
pgGetStyleInfo, see section 5.1, Copying and Deleting).

Both info and mask must both point to par_info
records; neither can be a null pointer. When the
function returns, both info and mask ��ll be filled
��th information you can exa��ne to deter��ne what
style(s), paragraph format(s), or font(s) exist
throughout the selected text, and/or which do not.

If set_any��ask was FALSE, all the fields in mask that
are set to nonzero indicate that the corresponding
field value in info is the same throughout the selected
text; all the fields in mask that are set to zero
indicate that the corresponding field value in info is
not the same throughout the selected text.

For example, suppose after calling pgGetParInfo,
mask.spacing has a nonzero value. That means that
whatever value has been set in info.spacing is the same
for every paragraph in the selected text. Hence, if
info.spacing is 12, then every character is spaced the
same.

On the other hand, suppose after calling pgGetParInfo,
mask.spacing is set to zero. That means that some of
the characters in the selected text match the spacing
in info and some do not. In this case, whatever value
happens to be in info.spacing is not certain.

Essentially, any non-zero value in mask is saying,
"Whatever is in info for this field is applied to every
character in the text," and any zero in mask is saying,
"Whatever is in info for this field does not matter
because it is not the same for every character in the
text."

You want to pass FALSE for set_any��ask to find out
what paragraph formats apply to the entire selection
(or not).

TABLE #3: POSSIBLE RESU��� WHEN S���ANY��ASK IS S�� TO
FALSE

infomask results

12 -1 All paragraphs have spacing of 12

12 0 Some paragraphs have spacing of 12

Setting set_any��atch to TRUE is used to deter��ne if
only a part of the text matches a given paragraph
format. This is described in "Obtaining Current Text
Format(s)". The par_info structure is described in
"par_info".

9 TABS AND INDEN��

9.1 Tab Support

One of the elements of a paragraph formats is a list of
tab stops. Although you could set tabs (or change tabs)
using pgSetParInfo, some additional functions have been
provided exclusively for tabs to help save on coding:

void pgSe��ab (pg_ref pg, select_pair_ptr
selection, tab_stop_ptr tab_ptr, short draw��ode);

This function sets a new tab that applies to the
specified selection.

The selection parameter is used in the same way as
other functions use a select_pair parameter: if it is a
null pointer, the current selection in pg is used,
other��se the selection is taken from the parameter
(for information about pgSetParInfo regarding
select_pair records, see section 8.2, Selection Range).

The draw��ode is also identical to all other functions
that accept a draw��ode parameter. draw��ode can be
the values as described in Draw Modes under section
2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen,
"OR" mode
bits_xor �� Copy offscreen,
"XOR" mode

The tab_ptr parameter is a pointer to the follo��ng
record (tab must not be a null pointer):

typedef struct
{

long tab_type; �� Type of tab
long position; �� Tab position
long leader; �� Tab leader (or

null)
long ref_con; �� Can be used for

anything

}

The tab_type field can be one of the follo��ng:

typedef enum
{

no_tab, �� none (used to
delete)

left_tab, �� left tab
center_tab, �� centre tab
right_tab, �� right tab
dec��al_tab �� tab on dec��al point

}

The position field in a tab_stop defines the tab's
position, in pixels. However, a tab's pixel position is
relative to either the left edge of pg's page_area, or
to the left edge of the ��ndow (see section 9.3, Tab
Base).

If leader is nonzero, the tab is drawn ��th that value
as a "leader" character. HER��S Paige assumes that the
character has s��ply been coerced to a numeric value,
which ��ll therefore ��ply whether the leader character
is a single ASCII byte (leader < 256), or a double byte
(leader > 256).

For example, if the leader is a single ASCII byte for a
"." (hexadec��al 2E), the value placed in leader should
be 0x0000002E. If leader is a double-byte character,
such as the Kanji ��th hexadec��al value 802E, then the
leader value should be set to 0x0000802E, etc.

my_tab.leader = '-';

A leader is the character placed before a tab, like
this

01234 5 6789
ABC -[�AB]DEFG

The ref_con field can be used for anything.

Deleting a Tab

You can delete a tab by calling pgSe��ab ��th a tab
record of type no_tab where the position field set to
the exact position of the existing tab you ��sh to
delete.

Changing a Tab

If you want to change a tab's position (location
relative to the tab base), you must delete the tab and
add a new one (see previous subsection, Deleting a
Tab).

If you want to change anything else (such as the tab
type or leader), s��ply call pgSe��ab ��th a tab record
whose position is identical to the one you ��sh to
change.

NO��S:

1. The max��um number of tab settings per paragraph is
32.

2. Tab settings affect whole paragraphs. They are in
fact part of the paragraph formatting.

��CH NO��: Tabs setting different for
different lines

I am displaying information in Paige ��th each
block of info occupying 2 lines of text. I
would like to have tab stops set differently
for the first and second line.

It depends on what you mean by "line."

If each line ends ��th a CR (carriage return), HER��S
Paige considers each one a "paragraph" and thus you can
s��ply change the paragraph formatting to be different
for each line.

However, if both of your lines are one continuous
string of text that just word-wraps into ��o lines, it
is virtually ��possible to apply ��o different sets of
tab stops.

This is because tabs are, by definition, a paragraph
format and a paragraph is s��ply text that ends ��th a
CR, no matter how many lines it ��ght have.

I ��ll assume you have CR-ter��nated lines
("paragraphs"). To apply different tab stops to the
second line, you need to s��ply use the tab setting
function(s) as given in the manual. of course you need
to know at least one of the text positions in the line
you need to change (for example, you need to know that
line number 2 starts at the 60th character, or the ��2
\mathr�{nd}� character, etc.); you also need to insert
the text line first before you can apply the tab-stop
changes (unlike text styles, paragraph styles require
that you have a "paragraph" for which to apply the
style change).

9.2 Changing / Getting Multiple Tabs

Get Tab List

This provides a way to look at all the tabs ��thin a
section of text:

(void) pgGe��abList (pg_ref pg, select_pair_ptr
selection, tab_ref tabs, memory_ref tab��ask, long
PG_FAR *screen_offset);

The selection parameter operates in the same way it
does for pgGetParInfo (see "Obtaining Current Text
Format(s)" for information about pgGetStyleInfo and
pgGetParInfo).

The tabs and tab��ask parameters for pgGe��abList are
memory allocations which you must create before calling
this function. When the function returns, tabs ��ll be

set to contain an array of tab_stop records that apply
to the selection range and tab��ask ��ll be set to
contain an array of longs containing non-zeros for
every tab that is consistent (the same) throughout the
selection.

For example, supposing that the specified selection
contained 3 tabs, when pgGe��abList returns, tabs
would contain all three tab_stop records and tab��ask
would contain 3 long words (each corresponding to the
tab in tabs). If the corresponding long word in
tab��ask is zero, that tab is inconsistent (not the
same) and/or does not exist throughout the entire
selection range.

The tab��ask, however, can be a M���NULL if you don't
require a "consistency report." The tabs parameter,
however, must be a valid memory_ref.

The screen_offset parameter should either be a pointer
to a long or a null pointer. When the function returns,
the variable pointed to by screen_offset ��ll get set
to the tab base value (the position, in pixels, against
which tabs are measured—see section 9.3, Tab Base). If
screen_offset is a null pointer, it is ignored.

NO��S

1. To learn how to create the allocations passed to
tabs and tab��ask, and how to access their
contents, see chapter 25, The Allocation Manager.

2. Calling this function forces the tabs memory
allocation to contain sizeof(tab_stop) record
sizes. Hence, the result of Ge��emorySize(tabs)
��ll return the number of tab_stop records.
S���larly, the tab��ask is forced to a record size
of sizeof(long), so Ge��emorySize(tab��ask) ��ll
return the same number.

3. If no tabs exist at all, pgGe��abList ��ll set your
tabs and tab��ask allocation to a size of zero.

Set Tab List

(void) pgSe��abList (pg_ref pg, select_pair_ptr
selection, tab_ref tabs, memory_ref tab��ask, short

draw��ode);

The above function provides a way to apply multiple
tabs all at once to a specified selection.

The selection parameter operates the same as all
functions that accept a select_pair.

draw��ode can be the values as described in Draw Modes
under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen,
"OR" mode
bits_xor �� Copy offscreen,
"XOR" mode

The tabs and tab��ask parameters must be memory
allocations that you create. The tabs allocation must
contain one or more tab stop records; the tab��ask
allocation must have an identical number of long words,
each long corresponding to the tab element in tabs.
For every entry in tab��ask that is nonzero, that
corresponding tab is applied to the selection range;
for every tab��ask entry that is zero, that tab is
ignored.

For example, if you set up the tabs allocation to
contain 3 tab_stop records, and the tab��ask had three
longs of 1, 0, 1, then the first and third tab would be
applied to the selection range; the second tab would
not be applied.

However, tab��ask can be M���NULL if you s��ply want
to set all tabs unconditionally.

NO��S

1. To learn how to create the allocations passed to
tabs and tab��ask, and how to access their
contents, see chapter 25, The Allocation Manager.

2. The max��um number of tab_stops applied to one
paragraph is 32.

3. When setting multiple tabs, any current tab
settings are maintained — they do not get
"deleted". However, a tab_stop does get rep�aced if
a new tab contains the same exact position.

9.3 Tab Base

Tab positions (the pixel positions specified in the
position field of a tab_stop record) are considered
relative to some other position and not absolute.
HER��S Paige supports three "tab base" values defining
the relative position for which to place tabs. If the
base value is positive or zero, HER��S Paige uses that
value as the tab base. If the base value is negative,
the tab base ��plies one of the follo��ng:

#define TAB_BOUNDS_RELA��VE -1 �� relative to
page_area bounds
#define TAB��RAP_RELA��VE -2 �� relative to
current line wrap edge

The difference be��een TAB_BOUNDS_RELA��VE and
TAB��RAP_RELA��VE depends on what kind of wrap shape
(page_area) that exists in the HER��S Paige object.
TAB_BOUNDS_RELA��VE means tabs are a��ays relative to
the entire bounding area (enclosing rectangle) of the
page_area, regardless of the shape, while
TAB��RAP_RELA��VE measures tabs against the lef��ost
edge of the specific portion of the text line for which
the tab is intended.

Setting/Changing Tab Base

(void) pgSe��abBase (pg_ref pg, long tab_base);
(long) pgGe��abBase (pg_ref pg);

To set (or change) the tab base, call pgSe��abBase and
provide the base value in tab_base, which can be a
positive number or zero (in which case, tabs are

relative to that pixel position), or a negative number
(either TAB_BASE_RELA��VE or TAB_BOUNDS_RELA��VE).

To get the current tab base, call pgGe��abBase and the
base currently used by pg ��ll be the function result.

NO��: The default tab base in a new pg_ref is zero
(tabs are relative to pixel position 0).

The four illustrations to follow show examples of how
tab positions are measured against the tab base value
(the tab base value is stored in pg_ref and can be
changed ��th the functions shown above).

Figure 4 ("TAB BASE = 0") shows a tab measurement ��th
a tab base of zero, while Figure 5 ("TAB BASE = 16")
shows a tab base of 16, in which case all tabs are
relative to 16 pixels from the left of the ��ndo�. In
both cases, the ��ndow's left origin is assumed to be
at coördinates (0, 0).

Figures 6 ("TAB BASE = TAB_BOUNDS_RELA��VE") and 7
("TAB BASE = TAB��RAP_RELA��VE") both measure tabs
against the left side of page_area, except that, where
a line of text exists, TAB��RAP_RELA��VE is measured
against the edge of page_area. If page_area is a
s��g�e recta�g�e, both of the latter ��o tab base modes
are �de�t�ca�.

Figures 4 – 7

The follo��ng are some illustrations of different tab
base values:

9.4 Indentation Support

Set Indents

One of the elements of a paragraph format is a set of
paragraph indentations (left, right, and first-line
indents). Although you could set these using
pgSetParInfo, some additional functions have been
provided exclusively for indents to help save on
coding:

void pgSetIndents (pg_ref pg, select_pair_ptr
selection, pg_indents_ptr indents, pg_indents_ptr

mask, short draw��ode);

The function above changes the indentations for the
text range specified.

The selection parameter operates in the same way it
does for pgGetParInfo. For information about selection
ranges, see section 8.2, Selection Range, and for
information about pgSetStyleInfo and pgSetParInfo, see
"Changing Styles").

draw��ode can be the values as described in Draw Modes
under section 2.11:

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly
to screen, "OR"

direct_xor, �� Directly
to screen, "XOR"

bits_copy, �� Copy
offscreen

bits_or, �� Copy
offscreen in "OR" mode

bits_xor, �� Copy
offscreen in "XOR" mode

bits_emulate_copy �� Copy "fake"
offscreen

bits_emulate_or �� "Fake" offscreen in "OR"
mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

The indents and mask parameter must point to the
follo��ng structure (neither pointer can be null):

typedef struct
{

long left_indent; �� Left margin
(indent)

long right_indent; �� Right margin
(indent)

long first_indent; �� First-line indent
}
pg_indents, PG_FAR *pg_indents_ptr;

The mask parameter should contain nonzero fields for
every indent you ��sh to change in indents.

NO��: "nonzero" means that you should fill the field
��th -1 (so all bits are set to ones).

Indentations are pixel positions relative to a text
line's max��um left and max��um right, as follows: the
left_indent is the distance from the lef��ost edge of a
line (�hich ��ll be the page_area's left edge for that
line); the right indent is the distance from the
righ��ost edge (�hich ��ll be the page_area's right
edge). Note that this is a positive number, not a
negative inset. The first_line_indent is relative to
the left_indent. Note that o��y the first_line_indent
should ever be negative (in which case the first line
of the paragraph hangs to the left of the left indent).

When indents are changed, they apply to whole
paragraphs.

Get Indents

To obtain the current indent settings of a selection
range, call the follo��ng:

(void) pgGetIndents (pg_ref pg, select_pair_ptr
selection, pg_indents_ptr indents,
pg_indents_ptr��ask, long PG_FAR
*left_screen_offset, long PG_FAR
*right_screen_offset);

The selection parameter operates in the same way it
does for pgGetParInfo (see “Obtaining Current Text
Format(s)" for information about pgGetStyleInfo and
pgGetParInfo).

The indents and mask parameters should point to a
pg_indents record (described above); neither parameter
can be a null pointer.

FUNC��ON RESU��: When this function returns, indents
��ll be set to the indentation values found in the
selection range, and mask ��ll have every field that is
consistent (the same) throughout the range to nonzero.

If left_screen_offset and right_screen_offset are non-
null, pgGetIndents ��ll set the variables to which they
point to the relative left position and right position,
respectively, against which the indents are measured.
The usual reason you ��ll need to have this information
is to draw a "ruler" sho��ng indents, in which case you
��ll need to know the relative edges to draw each
indentation. This is particularly ��portant if your
page_area is non-rectangular (because the relative
edges can change from line to line).

NO��

The left_screen_offset and right_screen_offset values
��ll include the scrolled position of the HER��S Paige
object, if any (see chapter 11, All About Scrolling).

10 All About Selection

An HER��S Paige object's text can be selected either by
the user or directly by your application.

10.1 Up and Running ��th Selections

Selection by the user is accomplished ��th
pgDragSelect; this has already been covered in detail
(see section 2.13 Blinking Carets and Mouse Selections
��th regards to pgDragSelect).

Additional support functions are provided, however, to
set selections directly and/or to obtain both s��ple
selections (insertion points or a selection pair of
offsets) as well as complex selections (discontinuous
selections).

10.2 S��ple Selections

A s��p�e selection is either a single insertion point
or a pair of text offsets which ��plies a single range.
This includes vertical selections that contain only ��o
points (top-left and bottom-right text positions). To
set a s��ple selection, call the follo��ng:

(void) pgSetSelection (pg_ref pg, long begin_sel,
long end_sel, short modifiers, pg_boolean
sho��hilite);

The selection range in pg ��ll be set to begin_sel to
end_sel, which are byte offsets; the lowest offset is
zero and the highest offset is pgTextSize(pg). If
begin_sel is the same as end_sel, a single insertion
is ��plied.

The modifiers parameter is identical to the modifiers
passed to pgDragSelect (for a list of bits you can pass
for modifiers, see section 2.15, Blinking Carets and
Mouse Selections). This parameter controls how the text
is selected, i.e., extended selection, vertical
selection, word selection, etc.

If should_draw is TRUE, a new highlight region is
computed and drawn. If should_draw is FALSE, nothing

on the screen changes (but pg ��ll internally change
its selection).

NO��: If you want to select all text, pass an
arbitrary-but-huge number for end_sel. HER��S Paige
��ll adjust large numbers to be equal to the current
text size.

To obtain the current selection (assu��ng it is a
s��ple selection), call the follo��ng:

(void) pgGetSelection (pg_ref pg, long PG_FAR
*begin_sel, long PG_FAR *end_sel);

The current selection range is returned in *begin_sel
and *end_sel. Either parameter can be a null pointer if
you don't want the result.

If the selection range is discontinuous, you ��ll
receive the first selection pair.

NO��: pgSetSelection ��ll not affect the style of text.
It merely highlights the text and gets the internal
range ��thin HER��S Paige so that other functions can
operate thereon.

10.3 Discontinuous Selections

A discontinuous selection can be accomplished ��th
pgDragSelect and setting the appropriate bit in the
modifiers parameter (in which case, every new verb of
mouse_down ��ll start a new selection pair). You can
also accomplish this from your app ��th multiple
pgSetSelection calls and the appropriate bit set in
modifiers.

To set a discontinuous selection from your app all at
once, however, you can use the follo��ng:

(void) pgSetSelectionList (pg_ref pg, memory_ref
select_list, long extra_offset, pg_boolean
sho��hilight);

The select_list parameter must be a memory allocation
containing one or more select_pair records (for

information about select_pair, see section 8.2,
Selection Range).

The offset_extra parameter is an amount to add to each
selection pair ��thin select_list; if you want to apply
the select_list as-is, pass zero for extra_offset.

If should_draw is TRUE, the new selection is drawn.

For information about memory allocations, see chapter
25, The Allocation Manager.

To obtain the current discontinuous selection, call the
follo��ng:

(�emory_ref) pgGetSelectionList (pg_ref pg,
pg_boolean for_paragraph);

FUNC��ON RESU��: This function returns a ne��y created
memory allocation containing one or more select_pair
records which represent the entire selection in pg.

If for_paragraph is TRUE, the selection pairs ��ll be
paragraph-aligned; other��se, they ��ll be character-
aligned (if you want to know what paragraphs fall in
the selection range(s), the distinction �ust be made).

CAU��ON: If there is no selection range, e.g. only a
caret, and for_paragraph is FALSE, this function ��ll
return M���NULL (zero).

You ��ll know how many select_pair records are
contained in the function result by calling
Ge��emorySize() on the function result—see chapter 25,
The Allocation Manager.

NO��: It is your responsibility to dispose the memory
allocation returned from this function.

10.4 Additional Selection Support

Extending the selection

(void) pgExtendSelection (pg_ref pg, long
amount_ext, short modifiers, pg_boolean

sho��hilite);

FUNC��ON RESU��: The above function extends the current
selection by amount_ext; the new extension follows the
attributes in modifiers if appropriate (for example,
the selection could be extended by whole words or
paragraphs).

Negative values in amount_ext extend to the left
(extend the beginning selection backwards); positive
numbers extend to the right (extend the ending
selection forwards).

The modifiers can generally be a combination of:

#define EX��ND��OD_B�� 0x0001 �� Extend
the selection
#define WORD��OD_B�� 0x0002 �� Select
whole words only
#define PAR��OD_B�� 0x0004 ��
Select whole paragraphs only
#define LINE��OD_B�� 0x0008 �� Select
whole lines only

#define DIS��OD_B�� 0x0020 ��
Enable discontiguous selection
#define ��YLE��OD_B�� 0x0040 �� Select
whole style range
#define WORD_C����OD_B�� 0x0080 �� Select
"words" del���ted by control chars
#define NO_HALF_CHARS_B�� 0x0100 �� Click does
not go left/right on half-chars

These are explained in Modifiers under section 2.15.
Vertical selection cannot be extended using the
modifiers. Using that modifier in combination ��th the
others ��ll cause unpredictable results.

If sho��hilite is TRUE, the new highlight is drawn; if
FALSE, the appearance does not change.

NO��: If the current selection is discontinuous, only
the last (ending) selection pair is affected by this
function.

Handling mouse & key combinations for
selection (�ac)

NO��: This code does not handle shift-clicks and
option-clicks in the same way as the demo. The point of
this code is that you can change the key combinations
for your own uses. Consult the demo for other ways of
handling this.

��nclude "Paige.h"

#define LE���ARROW 0x1C

#define RIGH��ARROW 0x1D
#define UP_ARROW 0x1E
#define DOWN_ARROW 0x1F
#define BACKSPACE_CHAR 0x08
#define R��URN_CHAR 0x0D

#define EN��R_CHAR 0x03
#define TAB_CHAR 0x09
#define LF_CHAR 0x0A
#define HO��_KEY 0x01
#define END_KEY 0x04

static int scroll_to_cursor(pg_ref my_pg);
static int key_doc_proc(EventRecord *event);
static int is_an_arro�(char key);
extern pg_globals paige_rsrv;
extern undo_ref last_undol

�� This is the keydown proc

static int key_doc_proc(pg_ref my_pg, EventRecord
*event)
{

char the_key;
short modifiers;
pg_ref my_pg;

the_key = event �� message & charCodeMask;
}

Next we parse the event record. We have the record
before going into pgInsert and can change the keys
around or do other things before we send the key into
the pg_ref. In this case, we intercept the HO��_KEY
and the END_KEY and scroll the pg_ref to the top and
bottom:

if (the_key �� HO��_KEY)
{

pgScroll(�y_pg, scroll_home, scroll_home,
best��ay);

UpdateScrollBarValues(�y_pg);
}
else
if (the_key �� END_KEY)
{

pgScroll(�y_pg, scroll_none, scroll_end,
best��ay);

UpdateScrollBarValues(�y_pg);
}
else
{

ObscureCursor();
}

Then we check to see if they are characters that HER��S
Paige would normally handle and if so, we insert them
into the pg_ref. When pgInsert contains the
key_insert��ode or key_buffer��ode in the insert��ode
parameter, it responds as we would expect when arrow
keys are entered, i.e., by moving the insertion point,
by handling backspace, by deleting previous characters,
etc.

We don't need to use pgExtendSelection.

HER��S Paige automatically handles extending the
selection by holding down the shift key while using
arrow keys if the EX��ND��OD_B�� is set during
pgInsert. key_buffer��ode ��ll keep calling the events
as long as HER��S Paige is receiving keystrokes, making
keyboard text insertion very fast. HER��S Paige won't
cycle through the event loop until the keystrokes are
paused.

�� Here are the modifiers changing the selection
modifiers = 0;
if (event �� modifiers & shiftKey)

modifiers |= EX��ND��OD_B��;
if (event �� modifiers & optionKey)

modifiers |= WORD��OD_B��;

if (the_key �� EN��R_CHAR)

{
event �� message = LF_CHAR;
the_key = LF_CHAR;

}

if (the_key �� ' ' �� the_key < 0 �� the_key ��
TAB_CHAR �� the_key �� R��URN_CHAR �� the_key ��
LF_CHAR �� the_key �� BACKSPACE_CHAR ��
is_an_arro�(the_key))
{

short verb_for_undo;
DisposeUndo(�y_pg, last_undo);
if (the_char �� paige_rsrv.bs_char)

verb_for_undo = undo_backspace;
else

verb_for_undo = undo_typing;
last_undo = pgPrepareUndo(�y_pg,

verb_for_undo, (void PG_FAR*) last_undo);

pgInsert(�y_pg, (pg_char_ptr ��he_key,
sizeof(pg_char), CURREN��POS���ON, key_insert��ode,
0, best��ay);

if (the_key �� BACKSPACE_CHAR)
pgAdjustScrol��ax(�y_pg, best��ay);

scroll_to_cursor(�y_pg);
}

return FALSE; �� to be returned

Number of selections

(pg_short_t) pgNu��elections (pg_ref pg);

This returns the number of selection pairs in pg. A
result of zero ��plies a single insertion point; a
result of one ��plies a s��ple selection, and like��se
for higher numbers.

Caret & Cursor

(pg_boolean) pgCaretPosition (pg_ref pg, long

offset, rectangle_ptr caret_rect);

FUNC��ON RESU��: This returns a rectangle in caret_rect
representing the "caret" corresponding to offset. If
offset equals CURREN��POS���ON (value of 1), the
current insertion point is used. If the current
selection in pg is in fact a single insertion, the
function returns TRUE; if it is not, caret_rect gets
set to the top-left edge of the selection and the
function returns FALSE.

NO��: If you specify some other position besides
CURREN��POS���ON, this ��plies a single insertion
point; thus, the function ��ll a��ays return TRUE.

(void) pgSetCursorState (pg_ref pg, short
cursor_state); (short) pgGetCursorState (pg_ref pg);

These ��o functions let you set the cursor (caret) to a
specified state or obtain what state the caret is in.

typedef enum
{

dont_dra��cursor, �� Do nothing
toggle_cursor, �� Toggle cursor

based on t��er
sho��cursor, �� Show cursor
hide_cursor, �� Hide cursor
deactivate_cursor, �� Cursor is no

longer active
update_cursor, �� Redraw cursor per

current state
restore_cursor, �� Turn cursor back

on (chiefly ��ndows usage)
}

NO��: Except for very unusual applications, you should
generally only use this function ��th force_cursor_off
and force_cursor_on.

To obtain the current cursor state, call
pgGetCursorState, which ��ll return either TRUE (cursor
is currently ON) or FALSE (cursor is currently OFF).

See also section 2.17, Activate/Deäctivate.

NO��: T�e �u�ct�o� resu�t (TRUE or FALSE) o�
pgGetCursorState �as d���er��g usages �� HER��S Pa�ge
�or ���dows a�d �or Mac��tos�. For ��ndows, the result
��plies whether or not the System caret is actively
blinking ��thin the pg_ref. For Macintosh, the result
��plies whether or not the caret is visible at that
instant while it is toggling during pgIdle().

void pgSetCaretPosition (pg_ref pg, pg_short_t
position_verb, pg_boolean sho��caret);

This function should be used to change the location of
the caret (insert position); for example,
pgSetCaretPosition is useful for handling arrow keys.

The position_verb indicates the action to be taken. The
low byte of this parameter should be one of the
follo��ng values:

enum

{
home_caret,
doc_botto��caret,
begin_line_caret,
end_line_caret,
next��ord_caret,
previous��ord_caret

}

The high byte of position_verb can modify the meaning
of the values shown above; the high byte should either
be equal to zero or to EX��ND_CAR���FLAG.

The follo��ng is a description for each value in
position_verb:

home_caret — If EX��ND_CAR���FLAG is set, the text is
selected from the beginning of the document to the
current position; if EX��ND_CAR���FLAG is clear, the
caret moves to the beginning of the document.

doc_botto��caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the end
of the document; if EX��ND_CAR���FLAG is clear the
caret advances to the end of the document.

begin_line_caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the
beginning of the current line; if EX��ND_CAR���FLAG is
clear the caret moves to the beginning of the line.

end_line_caret — If EX��ND_CAR���FLAG is set, the text
is selected from the current position to the end of the
current line; if EX��ND_CAR���FLAG is clear the caret
moves to the end of the line.

next��ord_caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the
beginning of the next word; if EX��ND_CAR���FLAG is
clear the caret moves to the beginning of the next
word.

previous��ord_caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the
beginning of the previous word; if EX��ND_CAR���FLAG is
clear the caret moves to the beginning of the previous
word.

If sho��caret is TRUE then the caret is redrawn in its
new location; other��se, the caret does not visibly
change.

10.5 Selection shape

It is possible to create a selection by specifying a
shape. This next function returns a list of
select_pairs when given a shape.

(void) pgShapeToSelections (pg_ref pg, shape_ref
the_shape, memory_ref selections);

FUNC��ON RESU��: This function ��ll place a list of
selection pairs in selections that contain all the text
that intersects the_shape. What gets put into
selections is an array of select_pair records, s���lar
to what is returned from pgGetSelectionList.

The memory_ref passed to selections must be a valid
memory allocation (�hich you must create).

It is also possible to deter��ne the selection shape.

(void) pgSelec��oShape (pg_ref pg, memory_ref
select_shape, pg_boolean sho��hilite);

This function sets the selection range(s) in pg to all
characters that intersect the specified shape.

For example, if the select_shape was one large
rectangle expanding across the entire document, then
every character would be selected; if the shape were
smaller than the document, then only the characters
that fit ��thin that shape—whether wholly or partially—
would be selected.

If sho��hilite is TRUE, the new selection region is
drawn.

For information about shapes and individual characters
and insertion point, see "Text and Selection
Positions". For information about highlighting see
section 2.17, Activate/Deäctivate.

Activate/Deactivate ��th shape of selection
still sho��ng

Macintosh

This function can be used to draw the selection area
around text when it is deactivated.

void Do_Activate(Boolean Do_An_Activate)
{

pg_ref my_pg;

if (!(�y_pg =
Get_pgref_from���ndo�(�Ptr_Untitled1))) return;

if(Do_An_Activate �� Handle the
activate

{
��

Update the scrollbar values
�� -

��

Turn on the selection hilites

pgSetHiliteStates(�y_pg,
activate_verb, no_change_verb, TRUE);

}
else �� Handle

the deactivate
{

��
Turn off the scroll bars here

�� -

��
Turn off the selection hilites

pgSetHiliteStates(�y_pg,
deactivate_verb, no_change_verb, TRUE);

outline_hilite(�y_pg);
/* do this if you want to draw an

outline around the selected text if the ��ndow is
deactivated, as in MPW or the HER��S Paige demo */

} ��
End IF
}

/* If you want the feature of dra��ng the line
around the selected text when the ��ndow is
deactivated, you can use this snippet from the
HER��S Paige demo */

��nclude "pgTraps.h" �� This draws xor-hilight
outline

static void outline_hilite(pg_ref the_pg)
{

shape_ref outline_shape;
outline_shape = pgRec��oShape(�paige_rsrv,

NULL);
if (pgGetHiliteRgn(the_pg, NULL, NULL,

outline_shape))
{

pg_scale_factor scale_factor;
RgnHandle rgn;
rectangle vis_r;
Rect clip;
PushPort(�Ptr_Untitled1);
PushClip();

pgAreaBounds(the_pg, NULL, ��is_r);
RectangleToRect(��is_r, NULL,

&clip);

ClipRect(�clip);

rgn = NewRgn();
pgGetScaling(the_pg, &scale_factor);
ShapeToRgn(outline_shape, 0, 0,

&scale_factor, rgn);
PenNormal();
PenMode(patXor);
S���HIL�����ODE(50);
FrameRgn(rgn);
DisposeRgn(rgn);
PopClip();
PopPort()

}
pgDisposeShape(outline_shape);

}

11 All about scrolling

Scrolling an HER��S Paige object is handled differently
than previous DataPak technology, ��th a ��der feature
set.

11.1 The ways to scroll

An HER��S Paige object can be scrolled in one of four
ways: by u��t, by page, by abso�ute pos�t�o�, or by a
p�xe� value.

1. Scrolling by u��t generally means to scroll one
text line increment for vertical scrolling, and
some predeter��ned distance for horizontal
scrolling.

2. Scrolling by page means to scroll one visual area's
worth of distance (clicking the "grey" areas of the
scroll bar).

3. Scrolling by abso�ute pos�t�o� means the document
scrolls to some specified location (such as the
result of dragging a "thumb").

4. Scrolling by p�xe� means to move the position up or
down by an absolute pixel amount; generally, this
method is used if for some reason all of the above
methods are unsuitable to your application.

For scrolling by a unit, page or absolute value, when
an HER��S Paige object is scrolled vertically, an
attempt is a��ays made to align the results to a line
boundary (so a partial line does not display across the
top or botto�).

11.2 How HER��S Paige Actually
Scrolls

In reality, neither the text nor the page rectangle
��thin an HER��S Paige object ever "moves". Whatever
coördinates you have set for an HER��S Paige object's
page_area (shape in which text ��ll flo�) remains
constant and do not change; the same is true for the
vis_area and exclude_area.

The way an HER��S Paige object changes its "scrolled"
position, however, is by offsetting the display and/or
the relative position of a "mouse click" when you call

pgDragSelect or any other function that translates a
coördinate point to a text location. The scrolled
position is a single vertical and horizontal value
maintained ��thin the pg_ref; these values are added to
the top-left coördinates for text display at dra��ng
t��e, and they are added to the mouse coördinate when
click/dragging.

This could be ��portant information if your application
needs to ��plement some other method for scrolling,
because all you would need to do is leave HER��S Paige
alone (do not call its scrolling functions) and offset
the display yourself (pgDisplay ��ll accept a
horizontal and vertical value to temporarily offset the
display). Realise that nothing every really moves;
lines are a��ays in the same vertical and horizontal
position unless your app explicitly changes the�.

NO��: Class library users — when ��plementing an HER��S
Paige-based document, you are generally better off
letting HER��S Paige handle it own scrolling. If at all
possible, do not ��plement scrollView classes that
attempt to scroll by changing the ��ndow origin.

11.3 The scroll

pgScroll

void pgScroll (pg_ref pg, short h_verb, short
v_verb, short draw��ode);

Scrolls the HER��S Paige object by a single unit, or by
a page unit. A unit and page unit is described in
section 11.5, Scroll Values. In short, pgScroll scrolls
a specified h_verb and v_verb distance.

The values to pass in h_verb and v_verb can each be
one of the follo��ng:

typedef enum
{

scroll_none, �� Do not scroll
scroll_unit, �� Scroll one unit
scroll_page, �� Scroll one page unit
scroll_home, �� Scroll to top of document

scroll_end �� Scroll to end of document
}
scroll_verb

Because HER��S Paige ��ll scroll the text some number
of pixels, a certain amount of "white space" ��ll
result on the top or bottom for vertical scrolling, or
on the left or right for horizontal scrolling. Hence,
the draw��ode indicates the dra��ng mode HER��S Paige
should use when it refreshes the "white space" areas;
normally, the value given for draw��ode should be
best��ay.

On the other hand, while a value of dra��none ��ll
disable all dra��ng and visual scrolling completely,
the text contents ��ll still be "moved" by the
specified amounts. In other words, were the HER��S
Paige document to be scrolled one page down (using
pgScroll) but ��th dra��none given for draw��ode,
nothing would change on the screen until the
application redisplayed the HER��S Paige text contents.
In this case, the refreshed screen would appear to be
scrolled one page down. The "draw nothing" feature for
scrolling is therefore used only for special cases, in
which an application wants to "move" the visual
contents up or down ��thout yet dra��ng anything.

draw��ode can be the values as described in Draw Modes
under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most efficient
method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen in "OR"
mode

bits_xor �� Copy offscreen in "XOR"
mode

Examples

Macintosh

if (the_key �� HO��_KEY)
{

pgScroll(doc �� pg, scroll_home,
scroll_home, best��ay);

UpdateScrollbarValues(doc);
}
else
if (the_key �� END_KEY)
{

pgScroll(doc �� pg, scroll_none, scroll_end,
best��ay);

UpdateScrollbarValues(doc);
}

Responding to W��HSCROLL and W��VSCROLL events
(��ndows)

case W��HSCROLL:
{

s��tch(�Para�)
{

case SB_PAGEDOWN:
pgScroll(pg, -scroll_page,

scroll_none, best��ay);
break;

case SB_LINEDOWN:
pgScroll(pg, -scroll_unit,

scroll_none, best��ay);
break;

case SB_PAGEUP:
pgScroll(pg, scroll_page,

scroll_none, best��ay);
break;

case SB_LINEUP:
pgScroll(pg, scroll_unit,

scroll_none, best��ay);
break;

case SB��HUMBPOS���ON:
{

short cur_h, cur_v, max_h,
max_v;

pg getScrollValues(pg,
&cur_h, &cur_v, &max_h, &max_v);

pgSetScrollValues(pg,

LOWORD(lPara�), cur_v, TRUE, best��ay);
break;

}
}

UpdateScrollbars(pg, hWnd);
}
case W��VSCROLL:

if (pg)
{

s��tch (�Para�)
{

case SB_PAGEDOWN:
pgScroll(pg,

scroll_none, scroll_page, best��ay);
break;

case SB_LINEDOWN:
pgScroll(pg,

scroll_none, scroll_unit, best��ay);
break;

case SB_PAGEUP:
pgScroll(pg,

scroll_none, scroll_page, best��ay);
break;

case SB_LINEUP:
pgScroll(pg,

scroll_none, scroll_unit, best��ay);
break;

case SB��OP:
pgScroll(pg,

scroll_none, scroll_home, best��ay);
break;

case SB_BOTTOM:
pgScroll(pg,

scroll_none, scroll_end, best��ay);
break;

case SB��HUMBPOS���ON:
case SB��HUMBTRACK:
{

short cur_h,
cur_v, max_h, max_v;

pgGetScrollValues(pg. &cur_h, &cur_v, &max_h,
&max_v);

pgSetScrollValues(pg, &cur_h, LOWORD(lPara�), TRUE,
best��ay);

break;

}
}
updateScrollbars(pg, hWnd);

}
return 0;

pgScrol��oView

(pg_boolean) pgScrol��oView (pg_ref pg, long
text_offset, short h_extra, short v_extra, short
align_line, short draw��ode);

Scrolls an HER��S Paige object so a specific location
in its text is visible. Canonically, this function is
used to automatically scroll to the "current line,"
although it could also be used for a number of other
purposes (such as find/replace) to show specific text
location.

The location in pg's text is given in text_offset; pg
��ll scroll the required distance so the character at
text_offset is at least h_extra pixels from the left
or right edge of the view area and v_extra pixels from
the top or bottom edge. Whether the distance is
measured from the top or botto�, or left or right
depends in the value of h_pixels and v_pixels; if
h_extra is positive, the character must scroll at least
pg pixels from the left, other��se the right edge is
used. For v_extra, a positive number uses the top edge
and a negative number uses the bottom edge.

The text_offset parameter can be CURREN��POS���ON
(value of -1), in which case the current insertion
point is used to compute the required scrolling, if
any.

FUNC��ON RESU��: The function returns "TRUE" if
scrolling occurred.

The draw��ode indicates how the text should be updated.
The value given is identical to the display��odes
described for pgDisplay; it should be noted that a
value of zero ��ll cause the text not to update at all,
which technically could be used to s��ply "offset" the
HER��S Paige object contents ��thout doing a physical
scroll at all.

Scroll to cursor position (��ndows)

�� Scrol��oCursor forces a scroll to the current
insertion point (if any)

void Scrol��oCursor(pg_ref, pg, HWND hWnd)
{

short state1, state2;
pg GetHiliteStates(pg, &state1, &state2;

if (state1 �� deactivate_verb �� state2 ��
deactivate_verb)

return;

if (!pgNu��elections(pg))
{

pgPaginateNo�(pg. CURREN��POS���ON,
FALSE);

if (pgScrol��oVie�(pg,
CURREN��POS���ON, 32, 32, TRUE, best��ay))

UpdateScrollbars(pg, hWnd);
}
else

UpdateScrollbars(pg, hWnd);
}

Scroll to cursor position (�acintosh)

�� Scrol��oCursor is called to "autoscroll" to the
insertion point

short Scrol��oCursor(doc_rec *doc)
{

short old_h_value;
if(!pgNu��elections(doc �� pg))
{

old_h_value = GetCtlValue(doc ��
h_ctl);

if (pgScrol��oVie�(doc �� pg,
CURREN��POS���ON, 32, TRUE, best��ay))

{
UpdateScrollbarValues(doc);
update_ruler(doc,

old_h_value);

return TRUE;
}

UpdateScrollbarValues(doc);
return FALSE;

}

��CH NO��: Can't scroll past end of text

I've noticed that I cannot scroll vertically
past the end of the text in the ��ndo�. So if
the HER��S Paige document is empty, it is not
possible to scroll vertically at all. I need to
be able to scroll vertically until the bottom
part of the 640x480 workspace is visible, even
if the user has not yet typed any text. How do
I do that?

You need to force your pg_ref to be fixed height, not
"variable". When you do pgNew, the default document
mode is "variable", meaning that the bottom of the last
text line is considered the document's botto�.

A "fixed" height document is one whose page shape
itself (not the text) deter��nes the document's botto�.
From your description of the app, I think this is what
you want.

To do so, you need to set BOTTO��FIXED_B�� and MAX
SCROLL_ON_SHAPE in the pg_doc_info's attributes field.
You do this right after pgNew, like this:

pg_doc_info doc_info;
pgGetDocInfo(pg, &doc_info);
doc_info.attributes |= (BOTTO��FIXED_B�� |
MAX_SCROLL_ON_SHAPE);
pgSetDocInfo(pg, &doc_info, FALSE, dra��none);

This ��ll tell HER��S Paige to scroll to the bottom of
your page area regardless of how much (or how little)
text there is.

Of course doing this you must now make sure your page
shape is exactly whatt you want, e.g. 640x480 (�hich
you said it is).

This "bonus" on this is that you ��ll never have to
worry about scrolling; i.e. you won't need to
constantly adjust the scrollbar max values once they
are set up because HER��S Paige ��ll only look at the
page area's botto�. EXCEP��ON: when you resize ��ndow
you'll need to adjust (see answer belo�).

��CH NO��: ��aller ��ndow/bad rectangle

If I resize my ��ndow to be "small", scroll to
the far right and far bottom edges of the
workspace, then resize the ��ndow to be
"large", I am left ��th the bottom right corner
of the workspace in the upper left corner of
the screen. What I need to be able to do is to
have HER��S Paige adjust the scrolled position
so that the bottom right corner of the
workspace is in the bottom right corner of the
screen. How do I do that?

There is actually an HER��S Paige function for this
exact situation:

PG_PASCAL (pg_boolean) pgAdjustScrol��ax (pg_ref
pg, short draw��ode);

What this does is the follo��ng:

1. Checks current scrolled position, and�—
2. If you are now scrolled too far by virtue of having

resized the ��ndo�, HER��S Paige ��ll scroll the
doc to "adjust."

Hence, you don't ��nd up ��th the situation you
described. The function result is TRUE if it had to
adjust (had to scroll).

However, I haven't tried this yet on a "fixed height"
doc (per my suggestion above), but I can't think of why
it shouldn't work.

Where this function should fit in the scheme of things
is:

1. After resize, resize the pg_ref (pgGrowVisArea or
whatever you do), then�—

2. Call pgAdjustScrol��ax.

If there's nothing to "fix" in the scrolling, HER��S
Paige won't do anything.

��CH NO��: Vertical scrolling behaves
strangely

In the demo & in my application as well since I
extracted scrolling code from the demo,
vertical scrolling behaves strangely. As the
text approaches the bottom of the ��ndow the
current position indicator moves up rather than
down. When the current input position reaches
the bottom of the visible portion of the ��ndow
and the ��ndow automatically scrolls up to
create extra visible space below the input
position, the current position indicator on the
scrollbar moves down. I would expect it to move
up to reflect the fact that the current
position is no longer at the bottom of the
��ndo�.

I'm not sure how else this could ever work, at least in
relation to how the demo sets up the document.

First, the reason the indicator moves "up" as you
approach the bottom is that HER��S Paige is adding a
whole ne�, blank page. So let's say you start ��th one
page and approach the bottom and the indicator shows
90% of the document has scrolled down. Suddenly
HER��S Paige appends a new page, so now the doc has 2
pages. In this case the scrolled position is no longer
90�, but rather 50�, so naturally the indicator has to
move UP.

Follo��ng the 90-to-50% indicator change, if the
document then auto-scrolls down by virtue of typing,
then of course the indicator moves DOWN. This sequence
is exactly as you described, which is "correct" in
every respect due to the way the document has been
created by the demo.

If this is too disconcerting you can work around it in
a couple of ways. The first way is �ot to ��plement
"repeater shapes" the way the demo is doing it, but
instead just make one long document. You do this by not
setting the V_REPEA��B�� in pg_doc_info. The end
result ��ll be less noticeable ��th the scrōll
indicator (��ght move a tiny bit but won't jump so far)

because HER��S Paige ��ll just add a small amount of
blank space instead of a whole page.

If you still want "repeater" shapes to get the page-by-
page effect as in the demo, then the only workaround is
to display something to the user that shows w�y the
indicator has moved so much. For example, you could
display "Page 1 of 1" and "Page 1 of 2" etc. So, when
HER��S Paige inserts a new blank page, it ��ght be
obvious to user why the indicator jumps if "Page 1 of
1" changes to "Page 1 of 2".

��CH NO��: Scrolling doesn't include picture
at bottom of document

I have ��plement pictures anchored to the
document (�here text wraps around the�).
However, if I have a picture below the last
line of text, I can't ever scroll the document
down to that location. How do I fix this?

I looked over your situation ��th HER��S Paige
exclusion areas (pictures). HER��S Paige actually does
support what you need.

In Paige.h you ��ll notice the follo��ng definition
near the top of the file:

#define EX_D���NSION_B�� Ox00000100 /*
Exclude area is included as ��dth/height */

When you call pgNew, giving EX_D���NSION_B�� as one of
the attribute flags tells HER��S Paige to include the
exclusion area as part of the "document height"—which I
believe is exactly what you want.

The reason for this attribute—and the reason HER��S
Paige does not automatically include an embedded
objects anchored to the page—is because it cannot make
that assumption, but in many cases (such as your own),
setting EX_D���NSION_B�� tells HER��S Paige to go ahead
and assume that.

��CH NO��: How do I make HER��S Paige scroll
to the right when using word wrap

I am building a line editor, which expands to
the right, very much like a C source code
editor. But my right margin is the right side
of the text. How do I get it to scroll
correctly?

I think the reason you're having a problem is that
HER��S Paige can only go by what is set in the document
bounds (the "page area") to deter��ne what the ��dth of
the document is.

Hence, the answer lies somewhere in forcing the
pg_ref's page area to expand as text expands to the
right. At thât t��e HER��S Paige ��ll adjust its
max��um scroll values, its clipping area, etc.—assu��ng
you set the page area using the high-level functions in
Paige.h.

The real trick is to figure out how ��de the text area
is. I'll create some examples of how you deter��ne the
current ��dth of a no-wrap document. See section 24.12,
Getting the Max��um Text Bounds.

11.4 Scroll Parameters

Set Scroll Params

(void) pgSetScrollParams (pg_ref pg, short unit_h,
short unit_v, short append_h, short append_v);

Sets the scroll parameters for pg as follows: unit_h
and unit_v define the distance each scrolling unit
shall be. This means if you ask HER��S Paige to scroll
pg by one unit, horizontal scrolling ��ll advance
unit_h pixels and vertical scroll ��ll advance unit_v
pixels.

However, unit_v can be set to zero, in which case
"variable" units apply. What occurs in this case (i.e.,
��th unit_v equal to zero) is a scrolling distance of
whatever is applicable for a single line.

For example, if the line ��mediately below the bottom
of the visual area is 18 pixels, a scrolling down of
one unit ��ll move 18 pixels; if the next line is 12

pixels, the next down scrolling would be 12 pixels, and
so on.

append_h and append_v define extra "white" space to
allow for horizontal max��um and vertical max��u�,
respectively.

For example, suppose you create an HER��S Paige
document whose total "height" is 400 pixels. Normally,
the scrolling functions in HER��S Paige would not let
you scroll beyond that point. The append_v value,
however, is the amount of extra distance you ��ll allow
for scrolling vertically: if the append_v were 100,
then a 400-pixel document would be allowed to scroll
500 pixels.

If you create a new pgRef and do not call
pgSetScrollParams, the defaults are as follows: unit_h
= 32, unit_v = 0, append_h = 0, append_v = 32.

Create scroll bars (�acintosh)

�� Create a pair of scrollbars
CreateScrollbars(��ndowPtr ��ptr, doc_rec ne��doc_;
{

Rect r_v, r_h, paginate_rect;
Ini���thZeros(�ne��doc, sizeof(doc_rec)));

ne��doc.��ptr = ��ptr;
ne��doc.�other = mother���ndow;
ne��doc.pg = create_ne��paige(��ptr);

pgSe��abBase(ne��doc.pg, TAB��RAP_RELA��VE);
pgSetScrollParams(ne��doc.pg, 0, 0, 0,

VER��CAL_EXTRA);
get_paginate_rect(��ptr, &paginate_rect);

r_v = ��ptr �� portRect;
r_v.left = r_v.right - 16;
r_v.bottom -= 13;
r_h = ��ptr �� portRect;
r_h.left = paginate_rect.right;
r_h.top = r_h.bottom - 16;
r_h.right -= 13;
OffsetRect(�r_v, 1, -1);
OffsetRect(�r_h, -1, 1);

ne��doc.v_ctl = NewControl(��ptr, &r_v, "",
TRUE, O, 0, 0, scrollBarProc, 0);

ne��doc.h_ctl = NewControl(��ptr, &r_h, "",
TRUE, 0, 0, 0, scrollBarProc, 0);
}

Getting scroll parameters

(void) pgGetScrollParams (pg_ref pg, short PG_FAR
*unit_h, short PG_FAR *unit_v, short PG_FAR
*append_h, short PG_FAR *append_v);

Returns the scroll parameters for pg. These are
described above for pgSetScrollParams��

11.5 Scroll Values

Getting scroll indicator values

(short) pgGetScrollValues (pg_ref pg, short PG_FAR
*h, short PG_FAR *v, short PG_FAR *max_h, short
PG_FAR *max_v);

This is the function you call to get the exact settings
for scroll indicators.

On the Macintosh, for example, you would call
pgGetScrollValues and set the vertical scrollbar's
value to the value given in *v and its max��um to the
value in *max_v. The same settings apply to the
horizontal scrollbar for *h and *max_h.

Note that the values are shorts. HER��S Paige assumes
your controls can only handle ±32 K; hence, it computes
the correct values even for huge documents that are way
larger than a scroll indicator could handle.

FUNC��ON RESU��: The function returns "TRUE" if the
values have changed since the last t��e you called
pgGetScrollValues. The purpose of this Boolean result
is to not slow down your app by excessively setting
scrollbars when they have not changed.

NO��: The values returned from pgGetScrollValues are
guara�teed to be ��thin the ± range of an integer
value. That means if the document is too large to
report a scroll position ��thin the confines of 32K,
HER��S Paige ��ll adjust the ratio be��een the scroll
value and the suggested max��um to accommodate this
l���tation to most controls.

CAU��ON: pgGetScrollValues can return "wrong" values if
a major text change has occurred (such as a large
insertion, or deletion, or massive style and font
changes) but no text has been redrawn.

The reason scroll values ��ll be inaccurate in these
cases is because HER��S Paige has not yet recalculated
the new positions of text lines - pwhich normally
occurs dyna��cally as it displays text - bso it has no
idea that the document's text d��ensions have changed.

To avoid this situation, the follo��ng rules should be
observed:

A common scenario that creates the "wrong" scroll
value is ��porting a large text file (��thout
dra��ng yet, for speed purposes), then attempting
to get the scrollbar max��um to set up the initial
scrollbar parameters, all before the ��ndow is
refreshed. To avoid this situation, it is generally
��se to force-paginate the document follo��ng a
massive insertion if you do not intend to display
its text prior to getting the scroll values.
A��ays call pgGetScrollValues a�ter the screen has
been updated follo��ng a major text change, and
never before. Normally, this is not a problem
because most of the text-altering functions accept
a draw��ode parameter which, if ≠ 0, tells HER��S
Paige to update the text display. There are special
cases, however, when an application has reasons to
��plement large text changes yet passes dra��none
for each of these; if that be the case, the screen
should be updated at least once prior to
pgGetScrollbarValues, OR the document should be
repaginated using pgPaginateNow.

Logical Steps

The follo��ng pseudo instructions provide an example
for any HER��S Paige platform when deter��ning the

values that should be set for both horizontal and
vertical scrollbars:

if (I just made a major text change and did not
dra�)

pgPaginateNo�(pg, CURREN��POS���ON, FALSE);
if (pgGetScrollValues(pg, &h, ��, &max_h, &max_v))
returns "TRUE" then

I should change my scrollbar values as:
Set horizontal scrollbar max��um to max_h
Set horizontal scrollbar value to h

Set vertical scrollbar max��um to max_v
Set vertical scrollbar value to v

else
Do nothing.

Update scrollbar values (��ndows)

void UpdateScrollbars (pg_ref pg, HWND hWnd)
{

short max_h, max_v;
short h_value, v_value;

if (pgGetScrollValues(pg (short far *)
&h_value, short far, (short far *) &max_h, short far
*) &max_v));

{
if max_v < 1)

max_v = 1; �� For ��ndows I
don't want scrollbar disappearing

SetScrollRange (hWnd, SB_VER�, 0,
max_v, FALSE);

SetScrollRange (hWnd, SB_HORZ, 0,
max_h, FALSE);

SetScrollPos (hWnd, SB_VER�,
v_value, TRUE);

SetScrollPos (hWnd, SB_HORZ,
h_value, TRUE);

Update scrollbar values (�acintosh)

void UpdateScrollbarValues (doc_rec *doc)
{

short h, v, max_h, max_v;

if (pgGetScrollValues(doc �� pg, &h, ��,
&max_h, &max_v))

{
SetCt��ax(doc �� v_ctl, max_v);
SetCtlValue(doc �� v_ctl, v);
SetCt��ax(doc �� h_ctl, max_h);
SetCtlValue(doc �� h_ctl, h);

}
}

��CH NO��: "Wrong" Scroll Values

In my application I need to scroll to certain
characters or styles in the document. I
noticed, however, that the visual location of
these special characters are often "wrong", so
when I attempt to scroll to these places I do
not ��nd up at the correct place.

Regarding the scrolling issues, you've touched upon a
classic problem that I have been handling ��th support
for years and years. "To Paginate or Not To Paginate,
that is the question", pace Shakespeare.

When dealing ��th potentially large word-wrapping text,
the editor must avoid repaginating the whole document
at a�� costs; other��se, performance is major dog-slo�.

Most of our users that have graduated from TextEdit
(�acintosh) or ED�� controls (��ndows) are l���ted in
their document size and never understand this proble�,
because TextEdit maintains an array of line positions
at all t��es. That's because it doesn't handle a lot of
text so it can get away ��th it. Our text engines, on
the other hand, support massive documents, changing
point sizes, irregular wrapping and who knows what
else. Hence, to learn the exact document height at any
given t��e, HER��S Paige must calculate every single
word-wrapping line to come up ��th a good answer.

To avoid turning into a major dog, HER��S Paige (and
its predecessors) elect to repaginate only at the point
they d�sp�ay. There are several good reasons for this,
the most ��portant one being a typical HER��S Paige-
based app applies all kinds of inserts, embedding,
style changing and the like before displaying; if

HER��S Paige decided to repaginate each t��e you set a
selection or inserted a piece of text or made any
changes whatsoever, it would become unbearably slo�.

The reason I'm explaining all of this is so you
understand WHY your document behaves the way it does
��th regards to scrolling. Your problem is s��ply: you
have not yet drawn the part of the document that you
��ll scroll to, hence it is unpaginated, hence the
"wrong" answer from pgGetScrollvalues. That is also why
auto-scroll-to-cursor works a wee bit better, because
the auto-scroll forces a redisplay, which forces a
paginate, which forces new information about the doc's
height which can then return the "right" answer.

Put s��ply, pgGetScrollValues has insufficient
information about the whole doc if a part of the doc is
"dirty" and undisplayed. That's why forced paginate
fixes the proble�. That's also why the "wrong" answer
from pgGetScrollValues is inter��ttent—your doc won't
a��ays be "dirty" every t��e you call the function, and
also somet��es HER��S Paige's best-guess in this case
is correct anyway.

So yes, pgPaginateNow (see section 24.3, Paginate Now)
is the best approach; I would call it every t��e before
getting the scrollbar info. The problem ��th your
current logic—paginating a�ter pgGetScrollValues—is
that the document hasn't been computed yet for
pgGetScrollValues, so it ��ght return FALSE, thinking
that the document is unchanged. Remember, pgPaginateNow
isn't that bad since it won't do anything unless the
document really needs it.

But, you should pass CURREN��POS���ON for the
paginate_to parameter— that ��ll help performance a
bit.

Setting scroll values

(void) pgSetScrollValues (pg_ref pg, short h, short
v, short align_line, short draw��ode);

This function is the reverse of pgGetScrollValues. It
provides a way to do absolute position scrolling, if
necessary.

For example, you would use pgSetScrollValues after the
"thumb" is moved to a new location. As in
pgGetScrollValues, the values are shorts, but HER��S
Paige computes the necessary distance to scroll.
(Because of possible rounding errors, however, after
you have called pgSetScrollValues you should
��mediately change the scroll indicator settings ��th
the values from a freah call to pgGetScrollValues.

Handling scrolling ��th mouse (�acintosh)

/* ClickScrollBars gets called in response to a
mouseDown event. If mouse is not ��thin a control,
this function returns FALSE and does nothing.
Other��se, scrolling is handled and TRUE is
returned. */

int ClickScrollBars (doc_rec *doc, EventRecord
*event)
{

Point start_pt;
short part_code;
ControlHandle the_control;
start_pt = event �� where;

Globa��oLocal(�start_pt);

if (part_code = FindControl(start_pt, doc��
��ptr, ��he_control))

{
scrolling_doc = doc;
if (part_code �� inThumb)
{

long max_h, max_v;
long scrolled_h, scrolled_v;
long scroll_h, scroll_v;
short v_factor,

old_h_position;

if
(�rackControl(the_control, start_pt, NULL))

{
old_h_position =

GetCtlValue(doc �� h_ctl);

pgSetScrollValues(doc �� pg, GetCtlValue(doc ��
h_ctl), GetCtlValue(doc �� v_ctl), TRUE, best��ay);

UpdateScrollbarValues(doc);
update_ruler(doc,

old_h_position);
}
else

TrackControl(the_control, start_pt, (ProcPtr)
scroll_action_proc);

}
return (part_code �� 0);

}

Max��um scroll value

Adjus��ents may be needed after large deletions; if so,
call the follo��ng function.

(pg_boolean) pgAdjustScrol��ax (pg_ref pg, short,
draw��ode);

This tells HER��S Paige that pg ��ght need some
adjus��ent after a large deletion or text size change.

For example, suppose you had a document in 24-point
text, scrolled to the botto�. User changes the text to
12 point, resulting in a scrolled position way too far
down! If you call pgAdjustScrol��ax, this situation is
corrected (by scrolling up the required distance).

If draw��ode ≠ 0, actual physical scrolling takes place
(other��se the scroll position is adjusted internally
and no dra��ng occurs). draw��ode can be the values as
described in Draw Modes under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most efficient
method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen in "OR"
mode

bits_xor �� Copy offscreen in "XOR"
mode

FUNC��ON RESU��: The function returns TRUE if the
scroll position changed.

11.6 Getting/Setting Absolute Pixel
Scroll Positions

void pgScrollPixels (pg_ref pg, long h, long v,
short draw��ode);

FUNC��ON RESU��: This function scrolls pg by h and v
pixels; scrolling occurs from the current position
(i.e., scrolling advances plus or ��nus from its
current position by h or v amount(s).

If draw��ode ≠ 0, actual physical scrolling takes place
(other��se the scroll position is adjusted internally
and no dra��ng occurs).

HER��S Paige ��ll not scroll out of range — the
parameters are checked and HER��S Paige ��ll only
scroll to the very top or to the max��um bottom as
specified by the document's height and the current
scroll parameters.

NO��: You should only use this function if you are not
using the other scrolling methods listed above.

(void) pgScrollPosition (pg_ref pg, co_ordinate_ptr
scroll_pos);

FUNC��ON RESU��: The above function returns the current
(absolute pixel) scroll position. The vertical scroll
position is placed in scroll_pos �� v and the
horizontal position in scroll_pos �� h.

The positions, however, are a��ays zero or positive:
when HER��S Paige offsets the text to its "scrolled"
position, it subtracts these values.

Forcing Pixel Alignment

In some applications, it is desirable a��ays to scroll
on "even" pixel boundaries, or some multiple other than
one.

For example, in a document that displays grey patterns
or outlines, it can be necessary to a��ays scroll in a
multiple of ��o pixels, other��se the patterns can be
said to be out of "alignment."

To set such a parameter, call the follo��ng:

(void) pgSetScrollAlign (pg_ref pg, short align_h,
short align_v);

The pixel alignment is defined in align_h and align_v
for horizontal and vertical scrolling, respectively.

For either parameter, the effect is as follows:

if the value is zero, the current alignment value
remains unchanged.
if the value is one, scrolling is performed to the
nearest single pixel (i.e., no "alignment" is
performed)
if the value is ��o or more, that alignment is
used.

For example, if align_v is ��o, vertical scrolling
would a��ays be in multiples of ��o pixels; if three,
alignment would a��ays be a multiple of three pixels,
etc.

NO��S:

1. The current scrolled position in pg is not changed
by this function. You must therefore make sure the
scrolled position is correctly aligned or else all
subsequent scrolling can be constantly "off" of the
desired alignment. It is generally ��se to set the
alignment once, after pgNew, while the scrolled
positions are zero.

2. The default alignment after pgNew is one.
3. You do not need to set scroll alignment after a

file is opened (��th upgraded); scroll alignment is
saved ��th the document.

Getting Alignment

(void) pgGetScrollAlign (pg_ref pg, short PG_FAR
*align_h, short PG_FAR *align_v);

This function returns the current scroll alignment. The
horizontal alignment is returned in *align_h and
vertical alignment in *align_v.

Both align_h and align_v can be NULL pointers, in
which case they are ignored.

11.7 Perfor��ng Your Own Scrolling

Because certain environments and frameworks support
document scrolling in many different ways, a discussion
here that explains what actually occurs inside an
HER��S Paige object that is said to be "scrolled" ��ght
prove helpful.

When HER��S Paige text is "scrolled," a pair of long
integers inside the pg_ref is increased or decreased
which defines the extra distance, in pixels, that
HER��S Paige should draw its text relative to the top-
left of the ��ndo�.

This is a critical point to consider for ��plementing
other methods of scrolling: the contents of an HER��S
Paige document �ever actua��y "�ove" by v�rtue o�
pgScroll, pgSetScrollParams or pgSetScrollValues.
Instead, only ��o long words ��thin the pg_ref (one for
vertical position and one for horizontal position) are
changed. When the t��e comes to display text, HER��S
Paige temporarily subtracts these values from the top-
left coördinates of each line to deter��ne the target
display coördinates; but the coördinates of the text
lines themselves (internally to the pg_ref) remain
unchanged and are a��ays relative to the top-left of
the ��ndow's origin regardless of scrolled position.

S���larly, when pgDragSelect is called (to detect which
character(s) contain a mouse coördinate), HER��S Paige
does the same thing in reverse: it temporarily adds the
scroll positions to mouse point to decide which
character has been clicked, again no text really
changes its position.

Considering this method, the follo��ng facts ��ght
prove useful when pgScroll needs to be bypassed
altogether and/or if your program��ng framework
requires a system of scrolling:

A pg_ref that is "scrolled" is s��ply a pg_ref
whose vertical and horizontal "scroll position"
fields are nonzero; at no t��e does text really
"scroll." HER��S Paige temporarily subtracts these
scroll positions from the display coördinates of
each line when it comes t��e to draw the text.
The "scroll position" values can be obtained by
calling pgScrollPosition.
The "scroll position" can be set directly by doing
a UseMemory(pg_ref), changing Paige_rec_ptr ��
scroll_position, then UnuseMemory(pg_ref).
The "scroll positions" are a��ays positive, i.e. as
the document scrolls from top to bottom or from
left to right, the scroll positions increase
proportionally by that many pixels.
The s��plest way to understand a pg_ref's "scroll
position" is to realise that HER��S Paige only
cares about the scroll position when it draws text
or processes a pgDragSelect().
When pgScroll is called, all that really happens is
the screen pixels ��thin the vis_area are scrolled,
the scroll positions are changed to new values,
then the text is redrawn so the "white space" fills
up.
If dra��none is given to pgScroll, all that occurs
is the scroll positions are changed (no pixels are
scrolled and no text is redrawn).
A call to pgGetScrollValues merely returns the
value from the scroll position members (��th the
values modified as necessary to achieve ≤16-bit
integer result and adjusted to match what the
application has defined as a "scroll unit").

11.8 Alternate Scrolling

Scrolling a pg_ref "normally", using pgScroll() and
s���lar functions, the top-left coördinates of the
document are changed internally. However, rather than
changing the ��ndow origin itself, HER��S Paige handles
this by remembering these scroll values, and offsetting
the position of text at the t��e it draws its text.

Using this default scrolling method, HER��S Paige
assumes that the ��ndow origin never changes and that
the visual region is relatively constant.

This method, however, can be troublesome ��thin
frameworks that require a document to scroll in some
other way, especially by changing the ��ndow origin.
Additionally, certain aspects of these frameworks are
difficult to disable and are therefore rendered
unfriendly to the HER��S Paige environment.

Most applications that require a different method of
scrolling feel they are required to bypass HER��S
Paige's scrolling system completely. While this may be
workable, the app suddenly looses all scrolling
features in HER��S Paige. For instance, aligning to the
top and bottom of lines can be lost; HER��S Paige's
built-in suggestions of where to set scrollbars is
lost, etc.

Furthermore, developers that need to bypass HER��S
Paige's scrolling suffer a loss in performance. For
example, such an application ��ght need to have an
exact "document height", and it ��ght thus continuously
need to change the HER��S Paige shapes region and
vis_area.

The purpose of the features and functions in this
section is to provide additional support to scroll many
different ways.

External Scrolling Attribute

A flag bit has been defined that can help applications
that want to do their own scrolling:

#define EX��RNAL_SCROLL_B�� 0x00000010

If you include this bit in the flags parameter for
pgNe�(), HER��S Paige ��ll assume that the
application's framework ��ll be handling the document's
top-left positioning in relation to scrolling.

What this means is if you create the pg_ref ��th
EX��RNAL_SCROLL_B��, you can continue to use all the
regular HER��S Paige scrolling functions ��thout
actually changing the relative position of text (i.e.,

you can control the position of text and the view area
yourself while still letting HER��S Paige compute the
document's max��um scrolling, its current scroll
position and the amount you should scroll to align to
lines).

For example, using the default built-in scrolling
methods (��thout EX��RNAL_SCROLL_B�� set), calling
pgScroll() ��ll move the display up or down by some
specified amount; calling pgGetScrollValues() ��ll
return how far the text moved. However, if
EX��RNAL_SCROLL_B�� is set, calling pgScroll() ��ll
change the scroll position values stored in the pg_ref
yet t�e text d�sp�ay �tse�� re�a��s u�a��ected. But
calling pgGetScrollValues() ��ll correctly reflect the
scroll position values (the same as it would using the
default scrolling method).

Hence, ��th EX��RNAL_SCROLL_B�� set you can still use
all of the HER��S Paige scrolling functions—yet you can
adjust the text display using some other method.

Changing ��ndow Origin

NO��: The term "��ndow origin" in this section refers
to the machine-specific origin of the ��ndow where the
pg_ref is "attached;" it does not refer to the "origin”
member of the graf_device structure.

The only problem ��th changing the ��ndow's origin that
contains a pg_ref is after you have changed the origin,
HER��S Paige's internal vis_area is no longer valid.

Using the default HER��S Paige scrolling syste�, an
application would have to force new vis_area shapes
into the pg_ref every t��e the origin changed. However,
this is inefficient. The follo��ng new function has
been provided to opt���se this situation:

void pg��ndowOriginChanged (pg_ref pg,
co_ordinate_ptr original_origin, co_ordinate_ptr
ne��origin);

If the ��ndow in which pg lives has changed its top-
left origin �or t�e purpose o� �ov��g �ts v�ew area ��
re�at�o� to text, you should ��mediately call this
function.

By "view area in relation to text" is meant that the
��ndow origin has changed to achieve a scrolling
effect.

You would �ot call this function if you s��ply wanted
the whole pg_ref to move, both vis_area and page_area.
The intended purpose of pg��ndowOriginChanged is to
inform HER��S Paige that your app has changed the (OS-
specific) ��ndow origin to create a scrolled effect,
hence the vis_area needs to be updated.

The original_origin should contain the normal origin of
the ��ndo�, i.e. what the top-left origin of the ��ndow
was initially when you called pgNe�(). The ne��origin
should contain what the origin is no�.

Note that the original_origin must be the original
��ndow origin at the t��e the pg_ref was created, not
necessarily the ��ndow origin that existed before
changing it to ne��origin. Typically, the original
origin is (0, 0).

However, original_orgin can be a null pointer, in which
case the position (0, 0) is assumed. Additionally,
ne��origin can also be a null pointer, in which case
the current scrolled position (stored inside the
pg_ref) ��ll be assumed as the new origin.

HER��S Paige ��ll take the most efficient route to
update its shape(s) to accommodate the new origin. Text
is not drawn, nor are the scrolled position values
(internal to the pg_ref) changed. All that changes is
the vis_area coördinates so any subsequent display ��ll
reflect the position of the text in relationship to the
visual region.

Oldies but Goodies

pgSetScrollParams();
pgGetScrollParams();
pgGetScrollValues();
pgScroll();

The above functions are documented elsewhere in this
manual, but they are listed again to encourage their
use even when custo��sing HER��S Paige scrolling. If
you create the pg_ref ��th EX��RNAL_SCROLL_B��, you

can begin using all the functions above ��thout
actually changing the relative position of text (i.e.,
you can control the position of text and the "view"
area yourself while still letting HER��S Paige compute
the document's max��um scrolling, its current scroll
position and the amount you should scroll to align to
lines).

Additional Support

void pgScrollUnitsToPixels (pg_ref pg, short
h_verb, short v_verb, pg_boolean add_to_position,
pg_boolean ��ndo��origin_changes, long PG_FAR
*h_pixels, long PG_FAR *v_pixels);

This function returns the amount of pixels that HER��S
Paige would scroll if you called pgScroll() ��th the
same h_verb and v_verb values. In other words, if you
are doing your own scrolling but want to know where
HER��S Paige would scroll if you asked it to, this is
the function to use.

However, this function also provides the option to
change the internal scroll values in the pg_ref, and/or
to inform HER��S Paige that you ��ll be changing the
��ndow origin.

Note that if you created the pg_ref ��th
EX��RNAL_SCROLL_B��, you can change the scroll position
values inside the pg_ref but the text itself does not
"move." This ��ll allow your application's framework to
position the text by changing the ��ndow origin, etc.,
but you can still have HER��S Paige maintain the
relative position(s) that the document is scrolled.

Upon entry, h_verb and v_verb should be one of the
several scroll verbs normally given to pgScroll().

If add_to_position is TRUE, HER��S Paige adjusts its
internal scroll position (�hich does not affect visual
text positions if EX��RNAL_SCROLL_B�� has been set in
the pg_ref). If FALSE, the scroll positions are left
alone.

If ��ndo��origin_changes is TRUE, HER��S Paige assumes
that the new scroll position, by virtue of the h_verb
and v_verb values, ��ll change the ��ndow origin by

that same amount. In other words, passing TRUE for this
parameter is effectively the same as calling
pg��ndowOriginChanged() ��th coördinates that reflect
the new origin after the scroll positions have been
updated.

When this function returns, *h_pixels and *v_pixels
��ll be set to the number of pixels that HER��S Paige
would have scrolled had you passed the same h_verb and
v_verb to pgScroll().

Physical Dra��ng/Scrolling Support

pg_region pgScrollViewRect (pg_ref pg, long
h_pixels, long v_pixels, shape_ref update_area);

This function ��ll physically scroll the pixels ��thin
pg's vis_area by h_pixels and v_pixels; negative
values cause the ��age to move up and left
respectively.

When the function returns, if update_area is not
M���NULL it is set to the shape of the area that needs
to be updated.

void pgSetCaretPosition (pg_ref pg, pg_short_t
position_verb, pg_boolean sho��caret);

This function should be used to change the location of
the caret (insert position); for example,
pgSetCaretPosition is useful for handling arrow keys.

The position_verb indicates the action to be taken. The
low byte of this parameter should be one of the
follo��ng values:

enum
{

home_caret,
doc_botto��caret,
begin_line_caret,
end_line_caret,
next��ord_caret,

previous��ord_caret
};

The high byte of position_verb can modify the meaning
of the values shown above; the high byte should be
either zero or set to EX��ND_CAR���FLAG.

The follo��ng is a description for each value in
position_verb:

home_caret — If EX��ND_CAR���FLAG is set, the text is
selected from the beginning of the document to the
current position; if EX��ND_CAR���FLAG is clear the
caret moves to the beginning of the document.

doc_botto��caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the end
of the document; if EX��ND_CAR���FLAG is clear the
caret advances to the end of the document.

begin_line_caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the
beginning of the current line; if EX��ND_CAR���FLAG is
clear the caret moves to the beginning of the line.

end_line_caret — If EX��ND_CAR���FLAG is set, the text
is selected from the current position to the end of the
current line; if EX��ND_CAR���FLAG is clear the caret
moves to the end of the line.

next��ord_caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the
beginning of the next word; if EX��ND_CAR���FLAG is
clear the caret moves to the beginning of the next
word.

previous��ord_caret — If EX��ND_CAR���FLAG is set, the
text is selected from the current position to the
beginning of the previous word; if EX��ND_CAR���FLAG is
clear the caret moves to the beginning of the previous
word.

If sho��caret is TRUE then the caret is redrawn in its
new location, other��se the caret does not visibly
change.

NO��: This function is s��ply a portable way to
physically scroll the pixels ��thin a pg_ref — no
change occurs to the scroll position internal to the

pg_ref, nor does the ��ndow origin or the vis_shape
change in any way.

void pgDra��crolledArea (pg_ref pg, long pixels_h,
long pixels_v, co_ordinate_ptr original_origin,
co_ordinate_ptr ne��origin, short draw��ode);

This function ��ll draw the pg_ref inside the area that
would exist (or already exists) after a pixel scroll of
pixels_h and pixels_v.

For example, if you (or your framework) has already
scrolled the document by, say, -60 pixels, a call to
pgDra��crolledArea(pg, 0, -60, …) ��ll cause the
document to update ��thin the region that exists by
virtue of such a scroll.

NO��: This function fills the would-be update area of a
scroll but does not actually scroll anything.

However, optional parameters exist to inform HER��S
Paige about ��ndow origin changes; if you have changed
the ��ndow origin since the last display, and have not
told HER��S Paige about it yet, you can pass the
original and new origin in original_origin and
ne��origin parameters, respectively. These parameters
do the same exact thing as on pg��ndowOriginChanged() —
except if they are null pointers in this case, they are
ignored.

void pgLastScrollAmount (pg_ref pg, long *h_pixels,
long *v_pixels);

This function returns the amount of the previous
scrolling action, in pixels.

The "scrolling action" would have been any HER��S Paige
function that has changed the pg_ref's internal scroll
position. That includes pgScroll and
pgScrollUnitsToPixels() if applicable, ��ter a��a.

By "previous scrolling" is meant the last function call
that changed the scroll position. For example, there
could have been 1,000 non-scrolling functions since the
last scrolling change, but pgLastScrollAmount() would
only return the values since the last scrolling.

11.9 Draw Scroll Hook & Scroll
Regions

An application could repaint the area uncovered by a
scroll ��th the dra��scroll hook:

PG_PASCAL(void) pgDra��crollProc (paige_rec_ptr pg,
shape_ref update_rgn, co_ordinate_ptr scroll_pos,
pg_boolean post_call);

This function gets called by HER��S Paige after the
contents of a pg_ref have been scrolled; the
update_rgn shape contains the area of the ��ndow that
has been uncovered (rendered blank) by the scrolling.

However, an unintentional anomaly exists ��th this
method: the update_rgn contains a shape that represents
the entire bounding area of the scrolled area. This
presents a problem if the scrolled area is non-
rectangular.

For example, an application ��ght have a "Find���"
dialogue box in front of the document. If a word is
found, causing the document to scroll, the uncovered
document area is non-rectangular (the region is
affected by the intersection of the Find ��ndo�).

The basic problem is that HER��S Paige cannot convert a
non-rectangular, platform-specific region into a
shape_ref.

The paige_rec structure (provided as the pg parameter
in the above hook) contains the member .port, which
contains a member called scroll_rgn. The scroll_rgn
��ll be a platform-specific region handle containing
the actual scrolled region.

For example, if dra��scroll is called, pg ��
port.scroll_rgn would be a RgnHandle for Macintosh and
an HRGN for ��ndows. In both cases, if you were to fill
that region ��th something, it would conform to the
exact scrolled area, rectangular or not.

As a rule, to avoid problems ��th non-rectangular
scrolled area(s), use pg �� port.scroll_rgn instead of
the update_rgn parameter.

12 ALL ABOUT SHAPES

12.1 Up and Running ��th Shapes

The quickest way to get "Up and Running" ��th shapes is
to see "Up and Running Shapes”. This shows how to get a
document up ��thin rectangles to display and/or edit.

This chapter provides more details should you ��sh to
provide your users ��th more complex shapes.

12.2 Basic shape areas

As mentioned in several places in this document, an
HER��S Paige object maintains three basic shape areas.

The exact description and behavior for each of these
shapes is as follows:

vis_area — The "viewable" area of an HER��S Paige
object. Stated s��ply, anything that HER��S Paige
displays that is even one pixel outside the vis_area
gets clipped (�asked out). Usually, the vis_area in an
HER��S Paige object is some portion (or all) of a
��ndow's content area and remains unmoving and
stationary. (See Figure 8 ���ra).

page_area — The area in which text ��ll flo�. For the
s��plest documents, the page_area can be considered a
rectangle, or "page" which defines the top-left
position of text display as well as the max��um ��dth.
For example, if you wanted to create a document
representing an 8" ��de page, you s��ply specify a
page_area that is 8 inches ��de. Hence, text ��ll wrap
��thin those boundaries.

The page_area may or may not be the same size as the
vis_area, and may or may not align ��th the vis_area's
top-left position. In fact, a large document on a small
monitor would a��ost a��ays be larger than the vis_area
(see Figure 8).

exclude_area - An optional area of an HER��S Paige
object which text flow must avoid. An good example of
��plementing an exclude_area would be placing a picture
on a document which text must wrap over (or wrap around

from left to right). The easiest way to do this would
be to build an exclude_area that contains the picture's
bounding frame, resulting in the forced avoidance of
text for that area.

All three shapes can be changed dyna��cally at any
t��e. Changing the page_area would force text to rewrap
to match the new shape; changing the exclude_area would
also force text to rewrap in order to avoid the new
areas.

If you are specifically ��plementing "containers", see
chapter 14, Containers Support, for an easier path.

If you are ��plementing any kind of exclusion shapes,
see chapter 15, Exclusion Areas.

As stated, the s��plest documents are rectangles;
however, the page_area can be non-rectangular. A good
example of this would be columns in which text must
flow from one column to the other. In this case, the
page_area would look s���lar to what is shown in Figure
9 ���ra.

12.3 Coordinates & Graphic
Structures

For purposes of cross-platform technology, HER��S Paige
defines its own set of structures to represent screen
positions (coordinates) and shapes. Except for machine-
specific source files, no reference is made to, say,
Macintosh “QuickDraw” structures.

The main components ("building blocks") of shapes are
the follo��ng record structures:

Rectangle

typedef struct
{

co_ordinate top_left; �� Top-left of rect
co_ordinate bot_right; �� Bottom-right of

rect
}
rectangle, *rectangle_ptr;

Co_ordinate

typedef struct
{

long v; �� vertical position
long h; �� horizontal position

}
co_ordinate;

12.4 What's Inside a Shape

Shapes are s��ply a series of rectangles. A very
complex shape could theoretically be represented by
thousands of rectangles, the worst-case being one
rectangle surrounding each pixel.

All shape structures consist of a bounding rectangle
(first rectangle in the array) followed by one or more
rectangles; the bounding rectangle (first one) is
constantly updated to reflect the bounding area of the
whole shape as the shape changes.

Hence, the shape structure is defined s��ply as:

typedef rectangle shape; �� Also a "shape", really
typedef rectangle_ptr shape_ptr;

A shape is maintained by HER��S Paige, however, as a
memory_ref to a block of memory that contains the shape
information. In the header it is defined as:

typedef memory_ref shape_ref; �� Memory ref
containing a "shape"

12.5 Rules for Shapes

The follo��ng rules apply to shapes ��th respect to the
list of rectangles they contain:

1. If rectangle edges are connected exactly (i.e., if
��o edges have the same value), they are considered
as "one" even if such a union results in a non-
rectangular shape (see Figure 10).

2. If rectangle edges are not connected, they are
considered separate "containers;" even if they
overlap. (Overlapping would result in overlapping
text if the shape definition was intended for the
area where text is drawn).

12.6 Building Shapes

Placing data into the shape_ref is the subject of
discussion in this section. However, you ��ll not
normally manipulate the shape_ref data directly.

Creating new shapes

The easiest way to create a new shape is to use the
follo��ng function:

(shape_ref) pgRec��oShape (pg��globals_ptr globals,
rectangle_ptr rect);

This returns a new shape_ref (�hich can be passed to
one of the "area" parameters in pgNew). The globals
parameter must be a pointer to the same structure given
to pgMe��tartup() and pgInit().

The rect parameter is a pointer to a rectangle; this
parameter, however, can be a null pointer in which case
an empty shape is returned (shape ��th all sides = 0).

Setting a Shape to a Rectangle

If you have already created a shape_ref, you can
"clear" its contents and/or set the shape to a single
rectangle by calling the follo��ng:

(void) pgSetShapeRect (shape_ref the_shape,
rectangle_ptr rect);

The shape the_shape is changed to represent the single
rectangle rect. If rect is a null pointer, the_shape
is set to an empty shape.

Adding to a New Shape

The best way to build a shape requiring more than one
rectangle is to call the follo��ng:

(void) pgAddRec��oShape (shape_ref the_shape,
rectangle_ptr rect);

The rectangle pointed to by rect is added to the
rectangle list in the_shape, combining it ��th other
rectangles if necessary. When a rectangle is added,
pgAddRec��oShape first explores all existing rectangles
in the_shape to see if any of them can "merge" ��th
rect (see section 12.5, Rules for Shapes). If none can
be combined, rect is appended to the end of the list.

If the_shape is empty, the_shape gets set to the
d��ensions of rect (as if you had called pgSetShapeRect
supra).

Disposing a Shape

To dispose a shape, call:

(void) pgDisposeShape (shape_ref the_shape);

Rect to Rectangle

Two utilities exist that make it easier to create
HER��S Paige rectangles:

��nclude "pgTraps.h"
(void) Rec��oRectangle (Rect PG_FAR *r,
rectangle_ptr pg_rect);
(void) RectangleToRect (rectangle_ptr pg_rect,
co_ordinate_ptr offset, Rect PG_FAR *r);

Rec��oRectangle converts Rect r to rectangle pg_rect.
The pg_rect parameter must be a pointer to a rectangle
variable you have declared in your code.

RectangleToRect converts pg_rect to r; also, if offset
is non-null the resulting Rect is offset by the amounts
of the coordinate (for example, if offset.h and
offset.v were (10, 5) the resulting Rect would be the
values in pg_rect ��th left and right amounts offset by
10 and top and bottom amounts offset by -5.

NO�� (�acintosh): Since a Mac Rect has a ±32 K l���t
for all four sides, HER��S Paige rectangle sides larger
than 32 K ��ll be intentionally truncated to about 30
K.

NO��: You �ust ��nclude "pgTraps.h" in any code that
calls either function above.

12.7 Manipulating shapes

Moving shapes

(void) pgOffsetShape (shape_ref the_shape, long h,
long v);

Offsets (�oves) *the_shape by h (horizontal) and v
(vertical) distances. These may be negative. Positive
numbers move to the right horizontally and down
vertically as appropriate.

Shrinking or expanding shape

(void) pgInsetShape (shape_ref the_shape, long h,
long v);

Insets (shrinks or expands) *the_shape by h and v
amounts. Positive numbers inset the shape inwards and
negative numbers expand it.

(pg_short_t) pgPtInShape (shape_ref the_shape,
co_ordinate_ptr point, co_ordinate_ptr offset_extra,
co_ordinate_ptr inset_extra, pg_scale_ptr scaling);

pgPtInShape returns "TRUE" if point is ��thin any part
of the_shape (actually, the rectangle number is
returned beginning ��th ��). The point is temporarily
offset ��th offset_extra if offset_extra is non-null
before checking if it is ��thin the_shape (and the
offset values are checked in this case, not the
original point).

If scaling is non-NULL, the_shape is temporarily scaled
by that scale factor. For no scaling, pass NULL.

Also, each rectangle is temporarily inset by the values
in inset_extra if it is non-NULL. Using this parameter
can provide extra "slop" for point-in-shape detection.
Negative values in inset_extra enlarge each rectangle
for checking and positive numbers reduce each rectangle
for checking.

NO��: For convenience, the_shape can be also be
M���NULL, which of course returns FALSE.

(pg_short_t) pgSectRectInShape (shape_ref
the_shape, rectangle_ptr rect, rectangle_ptr
sect_rect)

Checks to see if a rectangle is ��thin the_shape.
First, offset_extra, if non-null, moves rect by the
amount in offset_extra.h and offset_extra.v, then
checks if it intersects any part of the_shape. The
result is TRUE if any part of rect is ��thin the shape,
FALSE if it is not. If the_shape is empty, the result
is a��ays FALSE.

Actually, a "TRUE" result ��ll really be the rectangle
number found to intersect, beginning ��th 1 as the
first rectangle.

NO��: A result of TRUE does not necessarily mean that
rect doesn't intersect ��th any other rectangle in
the_shape; rather, one rectangle was found to intersect
and the function returns.

If sect_rect is not M���NULL, it gets set to the
intersection of rect and the first rectangle in
the_shape found to intersect it.

Shape Bounds

(void) pgShapeBounds (shape_ref the_shape,
rectangle_ptr bounds);

Returns the rectangle bounds of the outermost edges of
the_shape. The bounds is placed in the rectangle
pointed to by bounds (�hich cannot be null).

Comparing Shapes

(pg_boolean) pg��ptyShape (shape_ref the_shape);

FUNC��ON RESU��: This function returns TRUE if
the_shape is empty (all sides are the same or all
zeros).

(pg_boolean) pgEqualShapes (shape_ref shape1,
shape_ref shape2);

FUNC��ON RESU��: Returns TRUE if shape1 matches shape2
exactly, even if both are empty.

Intersection of shapes

(pg_boolean) pgSectShape (shape_ref shape1,
shape_ref shape2, shape_ref result_shape);

Sets result_shape to the intersection of shape1 and
shape2. All shape_ref parameters must be valid
shape_refs, except result_shape can be M���NULL (�hich
you ��ght want to pass just to check if ��o shapes

intersect). Additionally, result_shape cannot be the
shape shape_ref as shape1 or shape2 or this function
��ll fail.

If either shape1 or shape2 is an empty shape, the
result ��ll be an empty shape. Also, if nothing be��een
shape1 and shape2 intersects, the result ��ll be an
empty shape.

FUNC��ON RESU��: The function result ��ll be TRUE if
any part of shape1 and shape2 intersect (and
result_shape gets set to the intersection if not
M���NULL), other��se FALSE is returned and
result_shape gets set to an empty shape (if not
M���NULL).

FUNC��ON RESU��: Neither shape1 nor shape2 are altered
by this function.

(void) pgDiffShape (shape_ref shape1, shape_ref
shape2, shape_ref result_shape);

FUNC��ON RESU��: This function places the difference in
result_shape be��een shape1 and shape2.

Unlike pgSectShape, result_shape cannot be M���NULL;
however, it ca� be the same shape_ref as shape1 or
shape2.

The "difference" is computed by subtracting all
portions of shape1 from shape2, and the geometric
difference(s) produce result_shape. If shape1 is an

empty shape, result_shape ��ll be a mere copy of
shape2; if shape2 is empty, result_shape ��ll be
empty.

Erase a Shape

(void) pgEraseShape (pg_ref pg, shape_ref
the_shape, pg_scale_ptr scale_factor,
co_ordinate_ptr offset_extra, rectangle_ptr
vis_bounds);

FUNC��ON RESU��: This function ��ll erase the_shape (by
filling it ��th the background colour of the device in
pg).

The scale_factor parameter defines scaling, if any; for
no scaling, pass zero for this parameter. If you want
scaling, see section 16.2, Scaling a HER��S Paige
Object.

If offset_extra is non-null, the_shape is temporarily
offset by offset_extra �� h and offset_extra �� v
amounts before the erasure occurs.

If vis_bounds is non-null, then only the parts of
the_shape that intersect ��th vis_bounds get erased;
other��se, the whole shape is erased (see illustration
���ra).

Moving a Shape in a pg_ref

(void) pgOffsetAreas (pg_ref pg, long h, long v,
pg_boolean offset_page, pg_boolean offset_vis,
pg_boolean offset_exclude);

This function "moves" the page area and/or visual area
and/or the exclusion area of pg. If offset_page is
TRUE, the page area is moved; if offset_vis is TRUE the
visual area is moved; if offset_exclude is TRUE the
exclusion area is moved.

Each area is moved horizontally and vertically by h and
v pixels, respectively. What occurs is h gets added to
the left and right sides of all rectangles enclosed in
the shape while v gets added to top and botto�. Hence
the shape is moved left or right, up or down ��th
negative and positive values, respectively.

NO��: The contents of pg are not redrawn.

12.8 Region Conversion Utilities

void ShapeToRgn (shape_ref src_shape, long
offset_h, long offset_v, pg_scale_factor PG_FAR
*scale_factor, short inset_amount, rectangle_ptr
sect_rect, RgnHandle rgn);

This function sets region rgn to src_shape. In
addition, the region is offset by offset_h and
offset_v amounts. If scale_factor is non-NULL, the
resulting region is scaled by that scaling factor (see
chapter 16, Scaling).

Each rectangle added to the region is inset by
inset_amount (inset_amount is added to the top and
left and subtracted from right and botto�).

If sect_rect is non-NULL, every rectangle in the shape
is first intersected ��th sect_rect and the
intersection (only) is output to the region.

NO��: You �ust ��nclude "pgTraps.h" to use this
function.

NO�� (��ndows): RgnHandle is typedefed in pgTraps.h
and is the same as HRGN.

CAU��ON: Converting huge complex shapes to a region can
be slo�.

Picture Handle to Shape (�acintosh only)

The follo��ng function is available only for Macintosh
that takes a picture and produces a shape that encloses
the picture's outside edges:

��nclude "pgTraps.h"
(void) PictOutlineToShape (PicHandle pict, shape_ref
target_shape, short accuracy)

Given a picture in pict and a shape_ref in
target_shape, this function sets target_shape to
surround the outside bit ��age of the picture.

The accuracy parameter can be a value from 0 to 7 and
indicates how "accurate" the shape should be: 0 is the
most accurate (but consumes the most memory) and 7 is
the least accurate (but consumes the least memory). The
accuracy value actually indicates how many pixels to
skip, or "group" together in for��ng the ��age. If
accuracy = 0, the ��age is produced to the nearest
pixel — which theoretically can mean that a rectangle
is produced for every pixel surrounding the ��age
(�hich is why so much memory can be consumed).

The picture does not need to be a bi��ap ��age, and it
can be in colour (the ��age is produced around the
outside edges of all nonwhite areas for colour).

NO��: Large, complex ��ages can not only consume huge
amounts of memory but can take several seconds to
produce the ��age, so use this function sparingly!

NO��: You �ust ��nclude "pgTraps.h" to use this
function.

12.9 Page Area Background Colours

HER��S Paige ��ll support any background colour (�hich
your machine can support) even if the target ��ndow's
background colour is different.

The page area (area text draws and wraps) ��ll get
filled ��th the specified colour before text is drawn;
hence this features lets you overlay text on top of
non-white backgrounds (or, if desirable, ��ll also let
you overlay white text on top of dark or black
backgrounds).

Note that this differs from the bk_color value in
style_info. When setting the style_info background,
HER��S Paige ��ll s��ply turn on that background colour
only for that text. Setting the general background
colour (using the functions belo�) sets the background
of the entire page area.

COLOUR ��XT AND ��XT BACKGROUND

NO��: For information about setting text colour and
text background colour, see section 8.6,
Setting/Getting Text Colour, and "Changing Styles" .

HER��S Paige ��ll also recognise which colour is
considered "transparent". Normally, this would be the
same color as the ��ndow's normal background colour,
typically "white."

"Transparent" is s��ply the background colour for which
HER��S Paige ��ll not set or force. Defining which
color is transparent in this fashion lets you control
the background colour(s) for either the entire ��ndow
and/or a different colour for the ��ndow versus the
pg_ref's page area.

12.10 Transparent Colour

The colour that is specified as "transparent"
effectively tells HER��S Paige: "Leave the background
alone if the page area's background is the transparent
colour."

For most situations, you can leave the transparent
colour as its default — white.

Here is an example, however, where you ��ght need to
change the transparent color. Suppose that your whole
��ndow is a��ays blue but you want HER��S Paige to draw
on a white background. In this case, you would set the
transparent colour to something other than "white" so
HER��S Paige is forced to set a white background.
Other��se, HER��S Paige ��ll not change the background
at all when it draws text since it assumes the ��ndow
is already in that colour.

12.11 Setting/Getting the Background
Colour

(void) pgSetPageColor (pg_ref pg, color_value_ptr
color);
(void) pgGetPageColor (pg_ref pg, color_value_ptr
color);

To change the page area background colour, call
pgSetPageColor. The new background colour ��ll be
copied from the color parameter.

To obtain the current page colour, use pgGetPageColor
and the background colour of pg is copied to *color.

After changing the background, subsequent dra��ng ��ll
fill the page area ��th that colour before text is
drawn.

NO��: pgSetPageColor does not redraw anything.

12.12 Getting/Changing the
Transparent Colour

The "transparent colour" is a global value, as a field
in pg_ref. Hence, all pg_refs ��ll check for the
transparent colour by looking at this field.

If you need to swap different transparent colours in
and out for different situations, s��ply change
pg_globals �� trans_color to the desired value.

NO��: Usually the only t��e you need to change the
transparent colour to something other than its default
(�hite) is the follo��ng scenario: Non-white background
colour for the whole ��ndo�, but white background for a
pg_ref's page area. In every other situation it is safe
to leave the transparent colour in pg_globals alone.

12.13 ��scellaneous Utilities

(void) pgErasePageArea (pg_ref pg, shape_ref

vis_area);

This function fills pg's page area ��th the current
page background color of pg.

The fill is clipped to the page area intersected ��th
the shape given in the vis_area parameter. However, if
vis_area is a null pointer, then the vis_area in pg is
used to intersect instead.

NO��: You do not normally need to call this function:
HER��S Paige fills the appropriate areas(s)
automatically when it draws text. This function exists
for special situations where you want to "erase" the
page area.

12.14 HER��S Paige Background
Colours

The purpose of this section is to provide some
additional information about HER��S Paige "background"
colours and their relationship to the ��ndow's
background colour.

First, let's clarify the difference be��een three
different aspects of background:

Page backgrou�d co�our is the colour that fills the
background of your page area. The "page area" is
the specific area in the pg_ref in which text
flows, or wraps. This is not necessarily the same
colour as the ��ndow's background colour. For
instance, if the page area were smaller than the
��ndow that contained it, the page background would
fill only the page area, while the remaining ��ndow
area would remain unchanged.
���dow backgrou�d co�our is the background colour
of the ��ndow itself. This can be different than
the ��ndow's background colour.
Text backgrou�d co�our is the background colour of
text characters, applied as a style (just as
italic, bold, underline, etc. is applied to text
characters). Text background colour applies only to
the text character itself. This can be different
from both ��ndow background and page background.

12.15 Who/What Controls Colors

When creating new HER��S Paige objects, the page area
background colour is purely deter��ned by the
def_bk_color member of HER��S Paige globals.
Afterwards, this colour can be changed by calling
pgSetPageColor().

The ��ndow background colour is purely controlled by
your application and no HER��S Paige functions alter
that colour.

Text background is controlled by changing the bk_color
member of style_info, and that color applies only to
the character(s) of that particular style.

12.16 What is "trans_color" in
HER��S Paige globals?

The purpose of pg_globals.trans_color is to define the
default ��NDOW background. Since HER��S Paige is a
portable library, the trans_color member is provided as
a platform-independent method for HER��S Paige to know
what the "normal" background colour is.

HER��S Paige uses trans_color only as a reference.
Essentially, trans_color defines the colour that would
appear if HER��S Paige left the ��ndow alone, or the
colour that would be used by the operating system if
the ��ndow were "erased".

The value of trans_color becomes the most significant
when you have set the page and/or text color to
something different to the ��ndow color, because HER��S
Paige compares the page and text colors to trans_color
to deter��ne whether or not to ERASE the background.

Its reasoning is, "��� If the background color I am to
draw �s �ot the "normal" background color
[trans_color], then I need to force-fill the
background.”

Conversely, "��� If the background color I am to draw
�s the same as trans_color, then I don't have to set
anything special”.

Herein is most of the difficulty that HER��S Paige
users encounter ��th background colors: they set the
��ndow to a non-white background, yet they usually
leave pg_globals.trans_color alone. This is OK as long
as trans_color and the page area colour are different.

But if you want the page background and ��ndow
background to be the same, make sure
pg_globals.trans_color is the same as the page
background color. The general rules are:

1. A��ays set pg_globals.trans_color to the same value
as the ��ndow's background color. Do this
regardless of what the page area background color
��ll be.

2. The only t��e you need to change
pg_globals.trans_color is when/if you have changed
the ��ndow's background color to something other
than what is already in pg_globals.trans_color.

3. Setting page and/or text colour has nothing to do
��th the ��ndow's real background colour. These may
or may not be the same, and HER��S Paige only knows
if they match the ��ndow by comparing them to
trans_color.

4. To make the page area AND the ��ndow backgrounds
match each other, you must set
pg_globals.trans_color, pgSetPageColor() and the
��ndow background colour to the same colour value.

13 PAGINA��ON SUPPORT

Although HER��S Paige does not provide full pagination
features as such, several powerful support functions
and features exist to help ��plement page breaks,
columns, margins, etc.

For custom text placement not covered in this chapter
and for custom pagination features such as ��dows and
orphans, keep ��th next paragraph, etc. see chapter 37,
Advanced Text Placement.

13.1 HER��S Paige "Document Info"

In every pg_ref, the follo��ng structure is maintained:

typedef struct
{

long attributes; ��
Various attributes (see belo�)

short page_origin; ��
What corner = origin

pg_short_t nu��pages; �� Number of
"real" pages

short exclusion_inset; �� Amount to
inset exclusion area when clipping

short scroll_inset; ��
Amount to inset vis area when scrolling

short caret���dth_extra; �� ��dth of
the caret

long repeat_slop; ��
��n��um remaining before repeat

short ��n��um���dow; �� ��n��um
��ndow (lines) NO�� SPELLING!

short ��n��u��orphan; �� ��n��um
orphan (lines)

co_ordinate repeat_offset; �� Amount of
"gap for repeater shapes

rectangle print_target; �� App can
use as printed page size

rectangle margins; ��
Applied page margins

rectangle offsets; ��
Additional offsets of doc, 4 sides

long max_chars_per_line; �� Optional

max characters per line, or zero
long future[PG_FUTURE]; �� Reserved

for future

long ref_con; ��
App can store whatever
}
pg_doc_info, PG_FAR *doc_ptr;

NO��: Some of the fields in pg_doc_info are currently
unsupported, some of them are defined in Paige.h but
not included above (but exist for future enhancements
and extensions).

The fields that are currently supported are as follows:

attributes — defines special characteristics for the
page_area shape. The attributes field applies only to
the page_area shape (not vis_area or exclude_area),
and it is a set of bits which can be any of the
follo��ng:

#define V_REPEA��B�� 0x00000001
�� Shape repeats vertically
#define H_REPEA��B�� 0x00000002

�� Shape repeats horizontally
#define BOTTO��FIXED_B�� 0x00000004
�� Shape's bottom does not grow
#define NO_CONTAINER_JMP_B�� 0x00000010 ��
Can't jump containers
#define MAX_SCROLL_ON_SHAPE 0x00000020
�� Max��um scroll is on shape
#define NO_CLIP_PAGE_AREA 0x00000040
�� Page area does NOT clip text
#define ��NDO��CURSOR_B�� 0x00000400

�� Keep cursor in ��ndow view

#define COLOR_VIS_B�� 0x10000000
�� Page colour covers whole vis_area

V_REPEA��B�� or H_REPEA��B�� — causes the page_area to
"repeat" itself when text overflows the bottom (see
section 13.3, Repeating Shapes).

BOTTO��FIXED_B�� — forces the page_area's bottom to
remain the same (other��se, the bottom is considered
infinite or "variable" as text grows or shrinks).

NO��: This bit should be set for ��plementing
"containers." See chapter 14, Containers Support.

NO_CONTAINER_JMP_B�� — causes text to stay ��thin one
rectangle of the shape unless a container break
character is encountered. (�he usual purpose of setting
this mode is for "form" documents and other matrix
formats in which text can't leave a "cell" unless
explicitly tabbed to do so).

MAX_SCROLL_ON_SHAPE — causes HER��S Paige to compute
the max��um vertical scrolling values by the bottom-
most rectangle in the page area (as opposed to the
bottom-most text position).

NO��: This bit should be set for ��plementing
"containers." See chapter 14, Containers Support.

NO CLIP_PAGE_AREA — causes text dra��ng to be clipped
to the page area. Normally, text is only clipped to the
vis area. If this bit is set, it is clipped to the
intersection of vis area and page area.

NO��: You generally want this bit set for "containers"
and/or non-rectangular wrap shapes.

Each attribute is said to be "on" if the bit is set.
The default, after pgNew, is all zeros (all clear).

NO��: If either "repeat" bit is set, BOTTO��FIXED_B��
attribute is ��plied (and assumed) even if
BOTTO��FIXED_B�� is clear. This is because a shape
cannot "repeat" unless the bottom is unchangeable.

��NDO��CURSOR_B�� — causes the caret to stay ��thin the
vis_area regardless of where the document scrolls.

COLOR_VIS_B�� — informs HER��S Paige that the page
background colour is one and the same as the ��ndow's
background colour. Setting this bit causes all "erased"
areas to be painted ��th the page colour. Usually you
want to set this bit to avoid "flashing" during
scrolling if your ��ndow's background is non-white and
it is the same as the page background color.

repeat_slop — defines the ��n��um amount of vertical
space, in pixels, remaining at the end of a document
before the page shape repeats (new page “appended”).
Used for repeating shapes only.

exclusion_inset — defines the amount to inset each
exclusion rectangle for clipping. For example, if
exclusion_inset were -1, each exclusion rectangle would
be expanded 1 pixel larger before being subtracted from
the clipped text display.

caret���dth_extra — defines the ��dth of the caret, in
pixels. The default is 1.

scroll_inset — defines the amount to inset the
vis_area when scrolling. For example, if scroll_inset
were 1, a call to pgScroll()would visually scroll the
vis_area ��nus 1 pixel on all four sides.

��n��um���dow — defines the ��n��um number of lines
that can exist at the end of a page, other��se the
paragraph breaks to the next page.

��n��u��orphan — defines the ��n��um number of lines
that can exist at the beginning of a new page,
other��se the whole paragraph breaks to the new page.

repeat_offset — defines the distance or "gap" to place
be��een repeated shapes (see section 13.3, Repeating
Shapes).

nu��pages — contains the current "number of pages,"
which is really the number of t��es the shape ��ll
repeat itself if the whole document was displayed.

NO��: This is not necessarily the number of physical
pages that should be printed!

Repeating shapes can have "blank" pages due to the slop
value on a nearly-filled page causing a new repeat. For
correct printing, see pgPrin��oPage.

ref_con — Can contain anything you want.

TODO: Currently, page_origin, print_target and margins
fields are not supported but are provided for future
enhancements and extensions.

��CH NO��: Continuous document

The example demos had spacing above the
document that I couldn't get rid of. I'm
interested in some of the "mult��edia" features
of HER��S Paige, but I want a "strea��ng"
document (no margins/headers/footers spaces).
How do I get rid of the spacing so that all of
the document is one long stream of data?

By "spacing" I assume you mean the white space be��een
page breaks. We s��ply chose to ��plement the demo this
way, ��th the "repeating shape" feature in HER��S
Paige. Using this ��plementation, the pages show
exactly as they ��ll appear when printed, i.e. ��th all
the paper margins in each side including top/botto�.

Some developers like to ��plement documents that way,
yet some prefer the method that you mention (as one
continuous "page"). To do one continuous page, one
s��ply does not ��plement the "repeating shape,"; non-
repeating shapes is actually the default mode. You can
exa��ne non-repeating shapes in our "S��ple Demo" for
Macintosh

For information on page breaks in a continuous document
see technical note Artificial page breaks.

��CH NO��: Relationship of page_area, vis_area
and clipping regions clarified

I am having difficulty setting the appropriate
attributes to make my document behave in a
certain way���[etc.].

It is ��portant to understand the relationship be��een
the vis_area, page_area, and the various attribute
bits in a pg_ref thăt ��ght affect the behavior of both
shapes (by attribute bits is meant the value(s)
originally given to the flags parameter for pgNew
and/or new attribute settings given in pgSetAttributes)
and/or the attributes set in pg_doc_info.

The most essential difference be��een a pg_ref's page
area versus vis_area is the page_area is the
"container" in which text ��ll wrap, while its vis area
s��ply becomes the document's clipping region.

Generally, the vis_area remains constant and
unchanging, whereas the page_area, particularly its
botto�, can change dyna��cally as text is inserted or
deleted, depending on the attribute flags that are set
in the pg_ref. The follo��ng is the expected behaviour
of the page_area when different attribute flags are set
in the pg_ref:

Table 4: Expected behaviour of page_area
attributes

ATTRIBU�� B��� page_area BEHAVIOUR CLIPPING

no bits set
(default)

Bottom grows/shrinks
dyna��cally as text
is inserted or
deleted (see notes
belo�).

All dra��ng is
clipped to
intersection of
vis_area and
the ��ndow's
current clip
region.

BOTTO��FIXED_B�� Bottom remains
constant, never
changes regardless
of the text content

All dra��ng is
clipped to
intersection of
vis_area,
page_area and

ATTRIBU�� B��� page_area BEHAVIOUR CLIPPING

the ��ndow's
current clip
region.

NO���NDO��VIS_B�� No effect

Same as above
except ��ndow's
clip region �s
�ot included in
the clip region

EX_D���NSION_B��
(pgNe�() flag)

No effect visually,
but the total height
of the doc's
contents include the
exclusion area shape
(other��se the
exclusion area is
not considered part
of the document's
d��ensions).

No effect
visually

COLOR_VIS_B��

No additional effect
(but vis_area is
erased ��th the
background colour)

No effect
visually

V_REPEA��B��

Shape automatically
repeats when text
fills to its botto�,
achieving multiple
page effect.

Each repeating
shape intersects
��th clip region

NO_CLIP_REGION No effect

No clipping is
set at all (the
application must
set the clipping
area)

NO��S

On default behaviour (�hen no attributes have been
set):

1. In the default mode, the page_area's bottom is said
to grow dyna��cally to enclose the total height of
text. In this case, the bottom of the page_area
originally given to pgNew is essentially ignored;
the page area's top, however, is not ignored, as
that defines the precise top position of the first
line of text.

2. When the page area's bottom is said to "grow"
dyna��cally in the default mode, the shape itself
does not actually change, rather HER��S Paige
temporarily pretends its bottom matches the text
bottom when it paginates or displays. Although the
page_area appears to "gro�," any t��e you ��ght
exa��ne the page area shape, its bottom would not
be changed from the original d��ensions (to get
document's botto�, use pgTota��extHeight instead).

3. NO���NDO��VIS_B�� works only in the Macintosh
version and has no effect in the ��ndows version.

13.2 Getting/Setting Document Info

(void) pgGetDocInfo (pg_ref pg, pg_doc_ptr
doc_info);
(void) pgSetDocInfo (pg_ref pg, pg_doc_ptr doc_info,
pg_boolean inval_text, short draw��ode);

To obtain the current document info settings for pg,
call pgGetDocInfo, and a copy of the document info
record ��ll be placed in *doc_info.

To change the document info, call pgSetDocInfo and pass
a pointer to the new information. HER��S Paige ��ll
copy its contents in pg.

If inval_text is TRUE, HER��S Paige marks all the text
in pg as "not paginated," forcing new word-wrap
calculations the next t��e it paginates the document
(�hich ��ll normally be the next t��e the contents of
pg are drawn).

draw��ode can be the values as described in Draw Modes
under section 2.11:

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly

to screen, "OR"
direct_xor, �� Directly

to screen, "XOR"
bits_copy, �� Copy

offscreen
bits_or, �� Copy

offscreen in "OR" mode
bits_xor, �� Copy

offscreen in "XOR" mode
bits_emulate_copy �� Copy "fake"

offscreen
bits_emulate_or �� "Fake" offscreen in "OR"

mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

13.3 Repeating Shapes

If V_REPEA��B�� or H_REPEA��B�� is set in the
attributes field of pg_doc_info, the page_area shape
��ll "repeat" itself each t��e text overflows the
botto�. For V_REPEA��B��, the shape repeats itself
vertically; for H_REPEA��B��, the shape repeats itself
horizontally (see Figure 15).

However, the shape itself does not physically gro�.
Instead, HER��S Paige displays the shape repeatedly
down the screen, one page at a t��e. Hence, if you
changed page_area to some other shape while one of the
repeat bits were on, then all repeating shapes ��ll
change to the new shape.

The s��plest application of the repeat bits is to
provide a page rectangle (in original page_area), then
as the document grows multiple "pages" are added.

Note that the term page is used here to describe a
logical section of a document: the original shape does
not really need to be a page rectangle, rather it could
be a set of columns or any non-rectangular shape. In
any event, the entire shape repeats itself each t��e
text fills it up.

For such a feature, if you require a "gap" (page break
area), you can do so by setting repeat_offset in
pg_doc_info to a non-zero value. This is the amount, in

pixels, to add be��een repeated shapes. Note that
repeat_offset is a co_ordinate. This means you can
specify both a vertical and horizontal displacement for
repeated shapes (a horizontal displacement + vertical
displacement would cause a "staircase" effect).

If the shape is to repeat vertically, each occurrence
of the shape falls below the last one; for horizontal
repeating, each occurrence falls to the right of the
last one. The "gap" (repeat_offset), however, is added
to the appropriate corresponding sides:

repeat_offset.v a��ays displaces the repeating shape
vertically and repeat_offset.h a��ays displaces
horizontally, regardless of whether V_REPEA��B�� or
H_REPEA��B�� is set.

The purpose of the repeat_slop field is to append a
repeated shape before text actually fills the entire
shape.

For example, many applications prefer a new "page" to
become available when text is a��ost filled to the
bottom of the last page. The value you place in
repeat_slop is used for this purpose, and is used by
HER��S Paige as follows: once the bottom of text +
repeat_slop ≥ the shape's botto�, the shape is
repeated.

NO��S

1. Only the text bottom is measured against the shape,
not the right or left sides. Even if you set
H_REPEA��B��, a shape only repeats when text BOTTOM
+ repeat_slop hits or surpasses the shape's botto�.

2. Only one of H_REPEA��B�� or V_REPEA��B�� should
ever be set at a t��e (the shape ��ll not repeat
both ways).

For more details on how HER��S Paige paginates, see
chapter 37, Advanced Text Placement.

��CH NO��: Artificial page breaks

I am doing my word processor s���lar to ��
Word. I put in a page break and draw my line
dividing the pages. But when I go to print,

HER��S Paige draws a single page, the text does
not break to the next page.

The only real problem is if a pg_ref has no repeating
shapes (or containers), a page break char has no place
to "jump." Well, then during printing—just before
pgPrin��oPage—all one needs to do is set repeating
shapes, then print. When printing is done, restore non-
repeating shapes. That ��ll cause HER��S Paige to work
"correctly."

But when you want to go to page view mode, you should
then s��tch to repeating shapes, just as the above note
does for printing. That ��ll help solve your proble�.

Note that in a long document, anything exceeding 10
pages, finding a page ��ll require pagination which the
user ��li probably notice. This is why word includes a
"Paginate Now" menu item in the menu! You ��ll probably
want to paginate once and then I believe pgFindPage
should work more quickly. If you don't allow HER��S
Paige to paginate, it can't know which character is the
top of the page! HER��S Paige (and all other word
processors that display WYS��YG pages) ��ll have to
repaginate to find the positions of the first character
on the page. HER��S Paige currently performs many
tricks and second guessing on when and how to calculate
those positions.

Please note that HER��S Paige cannot make the same
assumptions as Word on w�e� to perform those
calculations. We must somet��es rely on the developer
to know when to perform the pagination.

13.4 Repeating shapes examples

In Figure 13, the initial page_area shape contains text
which is ��thin the bounds of the shape. Once text
overflows the botto�, the shape is repeated and placed
at repeat_offset.v pixels down and repeat_offset.h
pixels across.

The next illustration shows what happens when
repeat_stop is nonzero. In this example, repeat_stop's
value is added to the bottom of the text and, if the
result overflows the shape's botto�, the shape is
repeated. This provides an 'extra page' to get added
before the text completely fills the page shape.

Figure 23. The shape when text gets below the
repeat_stop value.

A repeating shape can actually be any shape and does
not need to be a "page" rectangle. Figure 17 shows an
example of "columns" repeating for each "page."

13.5 Shape Repeat Deletions

Repeated shapes ��ll "delete" themselves if text
shrinks above the repeated shape.

For example, if text filled up "page 1" causing a "page
2" to be created, deleting all the text ��ll
effectively delete "page 2."

13.6 ��dows and Orphans

HER��S Paige supports "��dow and orphan" control, to a
certain extent. When lines are computed to flow ��thin
repeating shapes (�ultiple "pages"), whenever
pg_doc_info.��n��um���dow is non-zero, HER��S Paige
��ll force a whole paragraph to the next page if its
number of lines on the bottom of the page are equal to
or less than ��n��um���do�.

S���larly, if pg_doc_info.��n��u��orphan is non-zero,
the whole paragraph is forced to the next page if its
number of lines already breaking to the next page are
less than or equal to ��n��u��orphan.

13.7 Header & Footer Support

While HER��S Paige does not directly support "headers
and footers," a number of functions are provided to
��plement them more easily.

Page modify hook

This "hook" allows an application to temporarily modify
the top, left, right and bottom margins of a "page"
before pagination occurs. This is useful for
header/footer/footnote support since temporary
"exclusion" areas can be tailored for any specific page
—and ��thout actually modifying the exclusion shape
itself.

PG_PASCAL (void) page��odify_proc) (paige_rec_ptr
pg, long page_nu�, rectangle_ptr margins);

The above is the prototype for page��odify. This is a
general HER��S Paige hook (not a style hook). When this
gets called, page_num ��ll indicate a zero-��dexed page
number and margins ��ll point to a "rectangle" that
represents four margins.

HER��S Paige calls this hook for every page that it
"paginates." Note that the margins rectangle is not
actually rectangle, rather it represents four margin
values to add to the top or left, and/or subtract from
bottom or right. Normally, these values ��ll be zero
(no extra margins); but if you wanted to remove, say,
16 pixels of space from the bottom of the page, you
would set margins �� bot_right.v to 16.

Each t��e this function is called, all four "margins"
are cleared to zero (the default). Hence if your
function does nothing, the page remains the original
size.

This hook is also very useful for alternating
"gutters," i.e. extra space on the right side for odd
pages and the same extra space on the left side for
even pages, etc.

CAU��ON: The top and bottom of the page can be modified
rando��y, i.e. each page can be different. Modifying

left and/or right sides, however, must result in the
same ��dth for all pages. For example, you should not
modify the left or right sides of page 1 but leave page
2's left or right side alone; it is OK to alternate
sides as they are modified as long as the distance
be��een left and right edges remain the same.

For additional information, see also chapter 27,
Custo��sing HER��S Paige.

void pgTextboxDisplay (pg_ref pg, paige_rec_ptr
target_pg, rectangle_ptr target_box, rectangle_ptr
wrap_rect, short draw��ode);

The above function is useful for dra��ng a pg_ref to
any arbitrary location; the text ��ll move (and
optionally wrap) to a specified target location
regardless of where its "normal" coordinates exist.

PURPOSE: Since most applications that ��plement headers
and footers use pg_refs for a "header" or "footer",
this new function exists for header/footer utilities.

If target_pg is not null, the dra��ng occurs to the
graphics device attached to that HER��S Paige record;
other��se the dra��ng occurs to the device attached to
pg. Note there are ��o usual ways to obtain a
paige_rec_ptr: the first is from a low-level hook, in
which case the paige_rec_ptr is usually one of its
parameters. The second way is to do UseMemory(pg_ref)
and then UnuseMemory(pg_ref) when you are done using
the paige_rec_ptr.

The target_box parameter is a pointer to a rectangle
which defines bounding "box" in which to draw the text.
This rectangle defines the top-left position of the
dra��ng as well as the clipping region. Text ���� �ot
rewrap into this shape; rather, it repositions its text
to align ��th the box's top-left coordinate, and
target_box also becomes the clipping region.

The wrap_rect parameter is a pointer to an optional,
temporary "page rect" for the text to wrap. If this is
a null pointer, the page_area is used ��thin pg (the
source pg_ref).

The draw��ode is identical to all other functions that
accept a dra��ng mode.

HER��S Paige supports several other page finding and
setting commands. These are closely aligned ��th
printing. These are shown in sections 16.6, Computing
Pages , and 16.7, Skipping Pages. Custom page display
techniques are described in section 16.9, Display Proc.

14 CONTAINERS SUPPORT

HER��S Paige has some built-in support for this purpose
by providing several functions to insert, delete and
change a list of rectangles that constitute page_area,
as well as the ability to attach an application-defined
reference to each "container" of the shape.

The term co�ta��er is used to describe a rectangular
portion of the page_area. For an application to support
page-layout text containers, the typical method is to
build the page_area (the shape in a pg_ref in which
text ��ll flo�) ��th the desired series of rectangles.

14.1 Setting Up for "Containers"

By default, a pg_ref ��ll not necessarily handle
containers the way you ��ght expect ��thout first
setting the appropriate values in pg_doc_info.

Before using any of the functions belo�, you should set
at �east the BOTTO��FIXED_B�� and MAX_SCROLL_ON_SHAPE
bits using pgSetDocInfo.

These bits are not set by default, so you should set
them soon after pgNew and before inserting or
displaying a pg_ref ��th "containers". For more
information about pgSetDocInfo see section 13.2,
Getting/Setting Document Info.

Setting up for containers

void setup_for_containers (pg_ref pg)
{

pg_doc_info info;
pgGetDocInfo(pg, ��nfo);
info.attributes = BOTTO��FIXED_B�� |

MAX_SCROLL_ON_SHAPE;
pgSetDocInfo(pg, ��nfo, FALSE);

}

The purpose of BOTTO��FIXED_B�� is to keep the last
rectangle from "gro��ng" along ��th text.

MAX_SCROLL_ON_SHAPE is optional, but ��ll usually be
what you want. Normally, HER��S Paige ��ll assume the
max��um vertical scrolling position is the same as the
bottom-most text position. In a "containers"
application, however, that is often undesirable since a
document can contain many "empty" containers. By
setting MAX_SCROLL_ON_SHAPE, HER��S Paige ��ll find the
bottom-most page area rectangle for computing max��um
vertical scrolling.

14.2 Setting and Maintaining
"Containers"

Number of containers

(pg_short_t) pgNumContainers (pg_ref pg);

Returns the number of "containers" currently in pg.
This function actually returns the number of rectangles
in the page area. Initially, after pgNew, the answer
��ll be however many rectangles were contained in the
initial page_area shape, which ��ll be at least one
rectangle.

Inserting containers

(void) pgInsertContainer (pg_ref pg, rectangle_ptr
container, pg_short_t position, long ref_con, short
draw��ode);

This makes a copy of the rectangle pointed to by
container and inserts it into pg's page_area.
Consequently, text ��ll flow ��thin the new shape now
including the container rectangle, hence a new
"container" is inserted.

Assu��ng that the current page area shape is a series
of rectangles, from 1 to �, the new rectangle is
inserted after the rectangle number in the position
parameter. However, if position is zero, the new
container is inserted at the beginning (becomes first
rectangle in the shape). If position is

pgNumContainers(pg), it is inserted as the very last
rectangle.

You can also "attach" any long-word value (such as a
pointer or some other reference) to the new "container"
by passing that value in ref_con. Consequently, you can
access this value at any t��e using
pgGetContainerRefCon (see Container refCon under
section 14.2).

draw��ode can be the values as described in Draw Modes
under section 2.11:

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly
to screen, "OR"

direct_xor, �� Directly
to screen, "XOR"

bits_copy, �� Copy
offscreen

bits_or, �� Copy
offscreen in "OR" mode

bits_xor, �� Copy
offscreen in "XOR" mode

bits_emulate_copy �� Copy "fake"
offscreen

bits_emulate_or �� "Fake" offscreen in "OR"
mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

NO��: The position parameter is not checked for
validity! Make sure it is ��thin the boundaries be��een
0 and pgNumContainers(pg) or a crash can result. (Also
note that the other container functions given here
require that the range be be��een 1 and
pgNumContainers; only in pgInsertContainer can
position be zero).

Getting particular container

void pgGetContainer (pg_ref pg, pg_short_t
position, pg_boolean include_scroll, pg_boolean
include_scale, rectangle_ptr container);

Returns the "container" rectangle defined by the
position parameter. This can be any of the rectangles
contained in pg's page area, from 1 to
pgNumContainers(pg). The rectangle is copied to the
structure pointed to by the container parameter.

If include_scroll is TRUE, the container returned ��ll
be in its "scrolled" position (as it would appear on
the screen). If include_scale is TRUE, the container
returned ��ll be scaled to the appropriate d��ensions
(based on the scaling factor in pg).

range-checking on position is not performed. Make sure
it is a valid rectangle number.

Container refCon

(long) pgGetContainerRefCon (pg_ref pg, pg_short_t
position);
(void) pgSetContainerRefCon (pg_ref pg, pg_short_t
position, long ref_con);

The application-defined reference that is "attached" to
container position is returned from
pgGetContainerRefCon; you can also set this value using
pgSetContainerRefCon.

Range-checking on position is not performed. Make sure
it is a valid rectangle number.

NO��: HER��S Paige does not know what you have set in
ref_con, hence if you have set some kind of memory
structure it is your responsibility to dispose of it
before pg Dispose.

14.3 Changing Containers

(void) pgRemoveContainer (pg_ref pg, pg_short_t
position, short draw��ode);

Deletes the rectangle of the page_area given in
position. This value must be be��een 1 (first
rectangle) and pgNumContainers(pg). Range-checking on
position is not performed.

CAU��ON: Never delete the last (and only) "container."
HER��S Paige does not check for this situation, and by
deleting the only container you ��ll essentially have
no area for the text to flow!

CAU��ON: If you have set a ref_con value attached to
the container to be deleted, it is gone forever after
calling this function. It is your responsibility to do
whatever is appropriate prior to deleting the
container, such as disposing any memory structures
involved ��th the refCon value, etc.

(void) pgReplaceContainer (pg_ref pg, rectangle_ptr
container, pg_short_t position, short draw��ode);

Replaces container defined in position ��th the
rectangle given in container. Note that only the
rectangle in the page area is replaced; the refCon
value ��ll remain intact—unless you change it ��th
pgSetContainerRefCon.

This is the function to use to change a container's
d��ensions, be it dragging, resizing, etc.

(void) pg��apContainers (pg_ref pg, pg_short_t
container1, pg_short_t container2, short draw��ode);

The ��o containers defined by container1 and
container2 "trade places." This function is therefore
useful for "bring to front" and "send to back"
features.

The associated refCon values for container1 and
container2 are also reversed; i.e., both rectangles and
attached refCons are swapped.

CAU��ON: Range-checking is not performed. Ensure that
container1 and container2 are valid rectangle numbers,
be��een 1 and pgNumContainers(pg).

Note

draw��ode can be the values as described in Draw Modes
under section 2.11:

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly
to screen, "OR"

direct_xor, �� Directly
to screen, "XOR"

bits_copy, �� Copy
offscreen

bits_or, �� Copy
offscreen in "OR" mode

bits_xor, �� Copy
offscreen in "XOR" mode

bits_emulate_copy �� Copy "fake"
offscreen

bits_emulate_or �� "Fake" offscreen in "OR"
mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

14.4 "Clicking" and Character
Support

Point ��thin container

(pg_short_t) pgPtInContainer (pg_ref pg,
co_ordinate_ptr point, co_ordinate_ptr inset_extra);

Returns the container rectangle containing point, if
any.

If inset_extra is non-NULL, every rectangle in the page
area is first inset by inset_extra �� h and
inset_extra �� v values before it is checked for
containing point. Negative inset values expand the
rectangle ou��ards, and positive numbers shrink the
rectangle.

The usual purpose of inset_extra is to detect a certain
amount of "slop" when looking for a mouse-click ��thin
a container. For example, if you want a container-click
detection ��thin four pixels of each container's edges,
pass inset_extra as a pointer to a co_ordinate of (-4,
-4).

FUNC��ON RESU��: If no container contains point, zero
is returned. Other��se, the container number is
returned (�hich ��ll a��ays be be��een 1 and
pgNumContainers(pg)).

NO��: Both scrolled position and scaling are taken into
consideration by this function. In other words,
container rectangles ��ll be checked as they appear on
the screen.

Character ��thin container

(pg_short_t) pgCharToContainer (pg_ref pg, long
offset);

Returns the container number, from 1 to
pgNumContainers(pg), containing the specified text
offset. The offset parameter is relative to the start
of all text and is a byte offset; it must be be��een 0
and pgTextSize(pg).

However, offset can also be CURREN��POS���ON (#defined
as -1) which ��ll return the container number for the
current insertion point (or the starting selection
point if there is a highlight range).

(long) pgContainerToChar(pg_ref pg, pg_short_t
position);

Returns the text offset of the first character that
exists in container number position. This function is
useful to locate the first character ��thin a
container.

However, it is possible that the container has no text
at all (text is not large enough to fill all
containers), in which case the function result ��ll be
-1.

The position parameter must be be��een 1 and
pgNumContainers(pg).

CAU��ON: Range-checking is not performed!

��CH NO��: Containers v. Repeating Shapes

How expensive is containers support in general,
compared to repeating shapes?

Repeating shapes are light-years faster, because they
don't really "repeat," at least not physically. All a
repeating shape does is repeat its display. If you
have, say, a single-rect shape, if it is repeating that
shape remains a single rect even if the doc repeats a
��llion t��es.

Containers, on the other hand, consist of a physical
array of rectangles. So that's one big difference—if a
single rect repeats 100 t��es, the "containers" method
��ll have 100 rectangles; a repeating shape of course
has just one.

"Repeating" is fastest because HER��S Paige only has to
consider one rectangle—and relative positions thereof.
On the other hand, when computing word-wrapping ��thin
containers, HER��S Paige must continuously walk through
a�� rects to see which ones intersect the text line,
etc. So the processing is much more extensive in this
case.

The general rule is: If your shape, regardless of its
complexity, must literally "repeat" in its exact for�,
then use repeat��g s�apes. If your shape does not
necessarily repeat as-is—or if the reoccurrence of the
shape can be slightly different than the previous
occurrence, then you are forced to use containers.

15 EXCLUSION AREAS

An HER��S Paige "exclusion" area is typically used for
page layout features in which text ��ll wrap around one
or more rectangles, including complex shapes (�hich are
also a series of small rectangles).

15.1 Setting & Maintaining
Exclusions

As in HER��S Paige's "container" support in the
previous chapter, several functions are provided to
insert, delete and change the series of rectangles in
the exclude shape of an HER��S Paige object.

Number of exclusions

(pg_short_t) pgNu��xclusions (pg_ref pg);

Returns the number of exclusion rectangles currently in
pg. This function actually returns the number of
rectangles in the exclude area. Initially, after pgNew,
the answer ��ll be however many rectangles were in your
exclude_area shape, if any.

Unlike pgNumContainers, it is possible (and often
likely) to have zero exclusion rectangles, so this
function can legit��ately report zero.

Inserting exclusion

(void) pgInsertExclusion (pg_ref pg, rectangle_ptr
exclusion, pg_short_t position, long ref_con, short
draw��ode);

This makes a copy of the rectangle pointed to by
exclusion and inserts it into pg's exclude_area.
Consequently, text ��ll flow around (��ll avoid) the
new shape now including the exclusion rectangle.

If position is zero, the new exclusion is inserted at
the beginning (becomes first rectangle in the shape).

If position is pgNu��xclusions(pg), it is inserted as
the very last rectangle.

It is possible that the current exclusion area in pg is
empty or does not exist; for example, you ��ght have
passed a null pointer for exclude_area in pgNew. This
function ��ll recognise that situation and ��ll work
correctly, building an initial exclude_area if
necessary. However, in this situation, the only valid
position for insertion is zero.

You can also "attach" any long-word value (such as a
pointer or some other reference) to the new exclusion
rectangle by passing that value in ref_con.
Consequently, you can access this value at any t��e
using pgGetExclusionRefCon (see "Exclusion refCon").

CAU��ON: The position parameter is not checked for
validity! Make sure it is ��thin the boundaries be��een
0 and pgNu��xclusions(pg) or a crash can result.

(void) pgInsertExclusionShape (pg_ref pg,
pg_short_t position, shape_ref exclude_shape, short
draw��ode);

Inserts an entire shape into the exclusion area of pg.
The list of rectangles ��thin exclude_shape is inserted
after rectangle number position; if position is zero,
the shape is inserted at the beginning. If position is
pgNu��xclusions(pg), the shape is inserted at the end.

If no exclusion area exists in pg prior to this
function, the result is essentially the same as
pgSetAreas to change or set a new exclusion area.

The contents of exclude_shape are copied, therefore you
can dispose exclude_shape any t��e after calling this
function.

NO��: Associated ref_con values for all new rectangles
��ll be initialised to zero.

Note

draw��ode can be the values as described in Draw Modes
under section 2.11:

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly
to screen, "OR"

direct_xor, �� Directly
to screen, "XOR"

bits_copy, �� Copy
offscreen

bits_or, �� Copy
offscreen in "OR" mode

bits_xor, �� Copy
offscreen in "XOR" mode

bits_emulate_copy �� Copy "fake"
offscreen

bits_emulate_or �� "Fake" offscreen in "OR"
mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

15.2 Get exclusion information

(void) pgGetExclusion (pg_ref pg, pg_short_t
position, pg_boolean include_scroll, pg_boolean
include_scale, rectangle_ptr exclusion);

Returns the exclusion rectangle defined by the position
parameter. This can be any of the rectangles contained
in pg's exclusion area, from 1 to pgNu��xclusions(pg).
The rectangle is copied to the structure pointed to by
the exclusion parameter.

If include_scroll is TRUE, the rectangle returned ��ll
be in its "scrolled" position (as it would appear on
the screen). If include_scale is TRUE, the rectangle
returned ��ll be scaled to the appropriate d��ensions
(based on the scaling factor in pg).

Warnings

1. Range-checking on position is not performed. Make
sure it is a valid rectangle number.

2. Unlike containers, it is possible to have zero
exclusion rectangles. You must not call this
function if pgNu��xclusions = 0.

15.3 Exclusion refCon

(long) pgGetExclusionRefCon (pg_ref pg, pg_short_t
position);
(void) pgSetExclusionRefCon (pg_ref pg, pg_short_t
position, long ref_con);

The application-defined reference that is "attached" to
exclusion rectangle position is returned from
pgGetExclusionRefCon; you can also set this value using
pgSetExclusionRefCon.

Warnings

1. Range-checking on position is not performed. Make
sure it is a valid rectangle number.

2. HER��S Paige does not know what you have set in
ref_con; hence if you have set some kind of memory
structure it is your responsibility to dispose of
it before pgDispose.

15.4 Changing Exclusion Rectangles

Removing exclusions

(void) pgRemoveExclusion (pg_ref pg, pg_short_t
position, short draw��ode);

Deletes the rectangle of the exclusion area given in
position. This value must be be��een 1 (first
rectangle) and pgNu��xclusions(pg). Range-checking on
position is not performed.

NO��: Unlike containers, it is acceptable to delete the
last and only exclusion rectangle.

CAU��ON: If you have set a ref_con value attached to
the exclusion rectangle to be deleted, it is gone
forever after calling this function. It is your
responsibility to do whatever is appropriate prior to
deleting the exclusion, such as disposing any memory
structures involved ��th the refCon value, etc.

(void) pgReplaceExclusion (pg_ref pg, rectangle_ptr
exclusion, pg_short_t position, short draw��ode);

Replaces exclusion rectangle defined in position ��th
the rectangle given in exclusion.

NO��: Only the rectangle in the exclusion area is
replaced; unless you change it ��th
pgSetExclusionRefCon, the refCon value ��ll remain
intact.

This is the function used to change an exclusion
rectangle's d��ensions, be it dragging, resizing, etc.

��apping exclusions

(void) pg��apExclusions (pg_ref pg, pg_short_t
exclusion1, pg_short_t exclusion2, short draw��ode);

The ��o exclusion rectangles defined by exclusion1 and
exclusion2 "trade places". This function is therefor
useful for "bring to front" and "send to back"
features.

The associated refCon values for exclusion1 and
exclusion2 are also reversed, i.e. both rectangles and
attached refCons are swapped.

CAU��ON: Range-checking is not performed. Make sure
exclusion1 and exclusion2 are valid rectangle numbers,
be��een 1 and pgNu��xclusions(pg).

Note

draw��ode can be the values as described in Draw Modes
under section 2.11:

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly
to screen, "OR"

direct_xor, �� Directly
to screen, "XOR"

bits_copy, �� Copy
offscreen

bits_or, �� Copy
offscreen in "OR" mode

bits_xor, �� Copy
offscreen in "XOR" mode

bits_emulate_copy �� Copy "fake"
offscreen

bits_emulate_or �� "Fake" offscreen in "OR"
mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

15.5 "Clicking" Exclusion Rectangles

(pg_short_t) pgPtInExclusion (pg_ref pg,
co_ordinate_ptr point, co_ordinate_ptr inset_extra);

Returns the exclusion rectangle containing point, if
any. It is safe to call this function even if there are
no exclusion rectangles (in which case pgPtInExclusion
��ll a��ays return zero).

If inset_extra is non-NULL, every rectangle in the
exclusion area is first inset by inset_extra �� h and
inset_extra �� v values before it is checked for
containing point.

Negative inset values expand the rectangle ou��ards,
and positive numbers shrink the rectangle.

The usual purpose of inset_extra is to detect a certain
amount of "slop" when looking for a mouse-click ��thin
an exclusion area. For example, if you want a click
detection ��thin four pixels of each exclusion's edges,
pass inset_extra as a pointer to a co_ordinate of -4,
-4.

FUNC��ON RESU��: If no exclusion contains point, or if
no exclusion area exists, zero is returned. Other��se,
the exclusion rectangle number is returned (�hich ��ll
a��ays be be��een 1 and pgNu��xclusions(pg)).

NO��: Both scrolled position and scaling are taken into
consideration by this function. In other words,
rectangles ��ll be checked as they appear on the
screen.

15.6 Dra��ng Exclusion Contents

If your exclusion rectangle(s) contain some type of
graphic ��age you need to dra�, the recommended method
for doing this is to use the page_proc hook. HER��S
Paige calls this "hook" function after dra��ng each
page of text; this is explained in chapter 27,
Custo��sing HER��S Paige.

15.7 Attaching Exclusions to
Paragraphs

Any exclusion rectangle can be "attached" to the top of
a paragraph. First, create the exclusion rectangle,
then call the follo��ng function:

void pgAttachParExclusion (pg_ref pg, long
position, pg_short_t index, short draw��ode)

The exclusion rectangle is represented by index; this
is a value from 1 to pgNu��xclusions(pg).

The paragraph is represented by the position parameter;
this is a text position into the document, and the

paragraph to which the exclusion rectangle attaches is
the paragraph which contains the position.

NO��: The text position does not need to be the exact
position of a paragraph beginning, rather it can be
anywhere ��thin the paragraph (before the carriage
return).

The exclusion rectangle, however, "attaches" to the top
line of the paragraph regardless of the text position
given.

After this function is called, the exclusion rectangle
��ll constantly and dyna��cally align to the top line
of the paragraph even as the text is changed or
deleted. If the paragraph is deleted, the exclusion
rectangle ��ll still exist but ��ll remain stationary
and attached to no paragraph.

Other��se, the exclusion rectangle is no different than
any other exclusion rectangle—text ��ll wrap around the
rectangle appropriately, even if that text is part of
the paragraph to which the exclusion is attached.

Notes and Warnings

1. Only the vertical position of the exclusion
rectangle is aligned to the paragraph; its
horizontal position ��ll remain unchanged.

2. Do not attach more than one exclusion rectangle to
the same paragraph or unexpected erroneous results
��ll occur.

draw��ode can be the values as described in Draw Modes
under section 2.11. The document ��ll redraw in its
entirety if any draw��ode but dra��none is selected;
other��se, the document ��ll not redraw at all.

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly

to screen, "OR"
direct_xor, �� Directly

to screen, "XOR"
bits_copy, �� Copy

offscreen
bits_or, �� Copy

offscreen in "OR" mode
bits_xor, �� Copy

offscreen in "XOR" mode
bits_emulate_copy �� Copy "fake"

offscreen
bits_emulate_or �� "Fake" offscreen in "OR"

mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

Deter��ning the Attached Paragraph

To deter��ne if an exclusion rectangle is currently
attached to a paragraph, call the follo��ng function:

long pgGetAttachedPar(pg_ref pg, pg_short_t
exclusion);

The exclusion rectangle in question is represented by
exclusion; this can be any value from 1 through
pgNu��xclusions(pg).

This function returns the text position of the
paragraph to which the exclusion is attached, if any.

If the exclusion is attached to no paragraph, the
function returns -1.

16 SCALING, PRIN��NG & DISPLAYING

16.1 Scaling

An HER��S Paige object can be scaled, which is to say
enlarged or reduced by a specified amount.

Scaling, however, must be equal for both vertical and
horizontal d��ensions.

The scaling factor is maintained by HER��S Paige using
the follo��ng record:

typedef struct
{

co_ordinate origin; �� Relative origin
pg_fixed scale; �� Scaling

(h��ord/loword fraction)
}
pg_scale_factor, PG_FAR *pg_scale_ptr;

The origin field supra contains the origin point to
compute scaling. Generally, this should be the top-left
point of your overall page_area (text flow area). The
purpose of the origin value is for HER��S Paige to know
what scaling is relative to, or stated more s��ply,
what is the top-left point of the entire area that is
being scaled.

The scale field is a long whose high-order and low-
order words define a numerator and deno��nator. Stated
as a formula, the scale value is computed as:

high word of (scale) / low word of (scale)

Hence, if scale is 0x00020001, scaling is 2-to-1 (2 /
1); if scale is 0x00010002, then scaling is 1-to-2 (1 /
2), etc.

If the scale value is zero, that is interpreted as no
scaling (same as 1 / 1).

16.2 Scaling a HER��S Paige Object

(void) pgSetScaling (pg_ref pg, pg_scale_ptr
scale_factor, short draw��ode);

This sets the scaling for pg. The scale_factor
parameter must be a pointer to a pg_scale_factor supra;
it cannot be a null pointer. From that moment on, pg
��ll display and edit in the specified scaled amount.

To obtain the current scaling factor, call:

(void) pgGetScaling (pg_ref pg, pg_scale_ptr
scale_factor);

The scaling factor of pg is returned in the
pg_scale_factor pointed to by scale_factor (�hich
cannot be null).

Notes

1. HER��S Paige makes a copy of your scale_factor, so
it does not need to remain static.

2. On Mac��tos� only, scaling text may be inaccurate
for environments that do not support Color
QuickDra�.

3. draw��ode can be the values as described in Draw
Modes under section 2.11. If draw��ode is not
dra��none, the text is redrawn in the new scale.

-

typedef enum
{

dra��none, �� Do not
draw at all

best��ay, �� Use most
efficient method(s)

direct_copy, �� Directly to
screen, overwrite

direct_or, �� Directly
to screen, "OR"

direct_xor, �� Directly
to screen, "XOR"

bits_copy, �� Copy
offscreen

bits_or, �� Copy
offscreen in "OR" mode

bits_xor, �� Copy
offscreen in "XOR" mode

bits_emulate_copy �� Copy "fake"
offscreen

bits_emulate_or �� "Fake" offscreen in "OR"
mode

bits_emulate_xor �� "Fake" offscreen
in "XOR" mode
};

16.3 Scaling and Vis Areas

A scaled pg_ref normally does not scale its vis_area.
If the attribute flag scale_vis_bit has been set in the
pg_ref, the vis_area is scaled, other��se the vis_area
remains unscaled.

Fig. 25 needs redrawn!

SCALE_VIS_B�� is usually set when one or more pg_refs
are components of a larger document, not the whole
document itself. For example, an object-oriented
dra��ng program using HER��S Paige to show text objects
would probably want to set SCALE_VIS_B�� to achieve the
rendering as shown in the bottom part of the above
example.

A general word-processor ��ndo�, however, would
probably not want SCALE_VIS_B��; instead, it may be
more desirable to leave the vis_area alone, as shown in
the top part of the above example.

16.4 Additional Scaling Utilities

(void) pgScaleLong(long scale_factor, long origin,
long PG_FAR *value);
(void) pgScalePt(pg_scale_ptr scale_factor,
co_ordinate_ptr amount_offset, co_ordinate_ptr pt);
(void) pgScaleRect(pg_scale_ptr scale_factor,
co_ordinate_ptr amount_offset, rectangle_ptr rect);

The three functions above ��ll scale a long, a
co_ordinate and a rectangle, respectively.

For pgScaleLong, the scale_factor is only the "scale"
part of a complete pg_scale_factor and the origin is
the appropriate origin position. The value to scale
must be pointed to by value and the value ��ll be
scaled when the function returns.

For pgScalePt, the pt parameter gets scaled by the
scaling factor in scale_factor; for pgScaleRect, the
rect parameter is scaled by scale_factor. For both
pgScalePt and pgScaleRect, amount_offset should be a
pointer to the amount the document is "scrolled", or a
null pointer if this does not matter.

Usually, amount_offset should be a negative compl��ent
of pgScrollPosition(�offset), as:

co_ordinate offset;
pg_scale_factor scaling;

pgGetScaling(pg, &scaling);
pgScrollPosition(pg, &offset);
pgNegatePt(�offset);
pgScaleRect(�scaling, &amount, &rect);

(void) pgScaleRec��oRect(pg_scale_ptr, scale_factor,
rectangle_ptr src_rect, rectangle_ptr target_rect,
co_ordinate_ptr offset_extra);

This function is s���lar to pgScaleRect except the
scaled result of src_rect is placed in target_rect. In
addition, src_rect is temporarily offset before being
scaled by offset_extra amounts (unless offset_extra is
a null pointer).

��CH NO��: Scaling a point inside a shape

I was looking through the manual and can't seem
to find any function that scales a whole shape.
Am I ��ssing something?

You are right, HER��S Paige does not have a "scale
shape" function, probably because it does not need one
internally. That is because nothing inside an HER��S
Paige document is ever really "scaled," it's all an
illusion (only the dra��ng itself is scaled; all shapes
and text positions remain the same at all t��es).

HER��S Paige locates a mouse point in a scaled document
by "reverse scaling" the mouse point. By that I mean it
scales the co_ordinate in question the opposite amount
that the document is (apparently) scaled.

It's fairly easy to reverse-scale something. All you do
is negate the current scale factor, for example:

scale_factor.scale = -scale_factor.scale;
pgScalePt(�scale_factor, &point);

This brings up an interesting point. Although I can see
that your function to find a point in a scaled shape
��ll work, perhaps a much faster method is to reverse-
scale the point instead of scaling the whole shape,
then just find the point ��thout the non-scaled shape.

16.5 Printing Support

��PORTANT: Do not confuse "pages" in the context of
printing ��th "paging" for repeating shapes. These are
��o different concepts entirely. Printed pages are
s��ply sections of text; "pages" of repeating shapes
are s��ply repeating display of the same shape, and in
fact, ��ght not contain text at all. A printed page and
repeating shape page are not necessarily the same
d��ensions. See section 13.3, Repeating Shapes.

"Printing" for HER��S Paige is s��ply an alternate
method of displaying its text offset and pinned neatly
to a specified "page" rectangle. In itself it knows
nothing about printing or printer devices.

The follo��ng function is intended to handle most
printing requirements:

(long) pgPrin��oPage (pg_ref pg, graf_device_ptr
target, long starting_position, rectangle_ptr
page_rect, short draw��ode);

The target parameter is an optional pointer to a
graphics device other than pg's default device (see
section 3.4, Graphic Devices).

The starting_position parameter is the text offset, in
bytes of the first text that should be printed (this is
a zero-indexed number).

The function ��ll draw as much text that can completely
fit inside page_rect, starting ��th starting_position
in pg, and dra��ng the first line relative to
page_rect's top-left. No text ��ll be drawn that does
not completely fit vertically inside page_rect, hence
no "half lines" ��ll exist at page_rect's botto�.
Horizontal fitting is not checked—see note belo�.

The effective result of this function is that a "page"
of text is drawn to some specified device.

The draw��ode parameter should generally be set to
best��ay, direct_or or bits_emulate_or.

Highlighting and the "caret" is suppressed when the
text is drawn by this function and the current vis_area
is ignored (it is temporarily replaced ��th the
d��ensions of page_rect).

FUNC��ON RESU��: The function returns the next text
position follo��ng the last line printed. If no more
text is available (all text fit from starting_offset to
end of document), zero is returned.

To print consecutive pages, you would print the first
page ��th starting_offset = 0, then call pgPrin��oPage
again ��th starting_offset = function result, and
continue doing so until the function result is zero.

During the t��e pgPrin��oPage is being executed, pg's
attribute flags ��ll have PRINT��ODE_B�� set.

NO��S:

1. Text is not automatically rewrapped to page_rect
even if page_rect is a different ��dth than pg's
page_area. Whether or not the lines ��ll spill off
to the right is also not checked. It is therefore
your responsibility to make sure page_rect is ��de
enough and, if necessary, force pg to rewrap by
changing the page_area first.

2. If you want to print in a "scaled" state, s��ply
set pg to the desired scaling then print the pages.

Printing in ��ndows

HER��S Paige printing for ��ndows is s���lar to
Macintosh in the sense that dra��ng is temporarily
redirected to some device other than the application
document ��ndo�.

When calling pgPrin��oPage, you need to set up a
graf_device (a multipurpose output device for platform-
independent dra��ng) and pass a pointer to that record
in the target parameter.

To create the graf_device, use:

(void) pglnitDevice(pg_globals_ptr globals,
generic_var the_port, long machine_ref,
graf_device_ptr device);

The globals parameter must be a pointer to HER��S Paige
globals (same structure given to pgInit() and
pgNe�()). Pass M���NULL to the_port. For ��ndows, this
would normally be type HWND but in this case there
isn't any ��ndow associated ��th the device.

Pass the Device Context handle in machine_ref. This
should be the HDC that you ��ll be "printing" to.

After calling pgInitDevice() you then pass the
graf_device structure to pgPrin��oPage() as the target
parameter.

Once you are completely through using the graf_device,
you must call the follo��ng:

(void) pgCloseDevice (pg_globals_ptr globals,
graf_device_ptr device);

The globals parameter must point to the same HER��S
Paige globals as before; the device parameters must be
a pointer to the graf_device previously initialised
��th pgInitDevice.

Notes

1. pgCloseDevice only disposes memory structures
created by HER��S Paige. The Device Context is not
affected.

2. When creating a graf_device in this fashion, the
Device Context given to pgInitDevice must remain
valid until you are completely through dra��ng to
the device (and consequently call pgCloseDevice).

Printer Resolution

If you create a graf_device for printing per the
instructions above, you do not need to do anything
special ��th regard to the resolution of the target
print device. The pgInitDevice() function ��ll resolve
all resolution issues and pgPrin��oPage() should render
the ��age correctly.

Sample to print on the Macintosh

Here is an example of printing a pg_ref to a standard
Macintosh print driver. Note that you must first create
a graf_device for HER��S Paige to accept the print
driver as the current "port". This example shows how to
do that as well:

void print_pg_doc(pg_ref pg, THPrint print_rec)
{

Rect page_rect;
rectangle pg_page;
graf_device pg_port;
long print_offset;
int cancel;
short page_num;
TPPrPort print_port;
TPrStatus p_status;
page_rect = (**print_rec) prInfo.rPage;
Rec��oRectangle(�page_rect, &pg, page);
�� print page rectangle

print_port = PrOpenDoc(print_rec, NULL,
NULL);

pgInitDevice(�paige_rsrv, print_port, 0,
&pg_port);

�� Makes graf_device
cancel = FALSE;

print_offset = 0;

page_num = 1;

while (page_num �& (!cancel))
{

prOpenPage(print_port, NULL); ��
Prints a "page"

print_offset = pgPrin��oPage(pg,
&pg_port, print_offset, &pg_page, best��ay);

PrClosePage(print_port);

if (print_offset) �� If more
to print, next offset non-zero

��page_num;
else

page_num = 0; ��
This way we break the loop

cancel = (PrError() ��
iPrAbort);

}

PrCloseDoc(print_port);
if (!cancel)

PrPicFile(print_rec, NULL, NULL,
NULL, &p_status);

pgCloseDevice(�paige_rsrv,
&pg_port); �� Disposes graf_device

��CH NO�� What do I need to do about higher
resolution coördinate systems?

I noticed that the coordinate system is in
pixels. How do we handle coordinates in for
high resolution printing? Are we l���ted to a
1/8" granularity?

In ��ndows, HER��S Paige handles printing resolution by
checking the capabilities of the device context you
provide. Assu��ng you have set up a graf device (per
examples shown in the Programmer's Guide), the device
resolution is deter��ned and stored ��thin the
grafdevice structure. Then when you call
pgPrin��oPage(), HER��S Paige ��ll scale the ��age to
match the printer's resolution.

Usually, you don't need to do anything special for
printing the max��um resolution since HER��S Paige

handles the difference(s) automatically be��een the
screen and printer.

��CH NO�� Scaled Printing

[Using ��ndows version], I am trying to print
an HER��S Paige document scaled to something
other than 100�. I do this by setting HER��S
Paige scaling but it has no effect, the
document a��ays prints 100�.

The reason scaling doesn't get reflected when you print
is that HER��S Paige overrides the scaling you have set
to the screen intentionally.

This is because it has to scale everything to match the
printer's resolution, hence it temporarily changes the
scaling factor.

The work-around is to trick HER��S Paige into thinking
the printer's resolution is something else. The scaling
��ll reflect the printer's resolution + whatever you
want. This is possible to do as long as you change the
resolution in the graf_device a�ter you initialise it
(see belo�).

For example, suppose you are printing to a 300 DPI
device. Let's say you want to reduce the printed ��age
by 50�. All you do is set the resolution to the
grafdevice to 300/2=150 DPI. In this case, HER��S Paige
��ll scale only half the size it should for 300 DPI,
which would render your output 50% reduced.

The printer resolution is in the graf device.resolution
field, and this value is a long word whose high/low
words are the horizontal and vertical resolutions (dots
per inch).

Example

void print (HDC out_dc)
{

graf_device print_port;
rectangle page_rect;
long offset, print_x, print_y;

pgInitDevice(�pg_globals, M���NULL, out_dc,

&print_port);

�� Get print resolution

print_y = GetDeviceCaps(out_dc, LOGPIXELSY);
print_x = GetDeviceCaps(out_dc, LOGPIXELSX);

�� I want 50% reduction, so put the
resolution at 1/2 the norm:

print_y �� 2;
print_x �� 2;
print_dev �� resolution = print_x;
print_dev �� resolution ��- 16;
print_dev �� resolution |= print_y;

16.6 Computing Pages

(short) pgNumPages (pg_ref pg, rectangle_ptr
page_rect);

FUNC��ON RESU��: This function returns the number of
"pages" that would print ��th page_rect.

In other words, if page_rect were passed to
pgPrin��oPage and the whole document were printed,
pgNumPages ��ll return how many passes would be made
(�hich ��plies how many pages would print).

NO��S

1. This function only works if you have the exact same
settings in pg that ��ll exist when pgPrin��oPage
is called, i.e., scaling factor, page_area size,
etc.

2. Using this function for large documents ��ll
consume a lot of t��e. This is because HER��S Paige
has to deter��ne the exact number of pages by
paginating every line of text according to the page
rectangle you have specified.

16.7 Skipping pages

(long) pgFindPage (pg_ref pg, short page_nu�,
rectangle_ptr page_rect;

FUNC��ON RESU��: This function ��ll return a text
offset that you could pass to pgPrin��oPage to print
page number page_num, assu��ng a page rectangle
page_rect.

In other words, the follo��ng question is answered by
this function: if you called pgPrin��oPage page_num
t��es using page_rect, what text offset would be
returned?

In essence, you could use this function to "skip" pages
by computing the offset in advance ��thout printing.

When printing in the ��ndows environment, the printer
font(s) do not a��ays match the screen font(s) in terms
of character placement and ��dth. Per ��crosoft's
technical notes, if the application prefers that print
quality take precedence over screen quality, yet
WYS��YG character placement is equally ��portant, the
recommended method is to render the screen ��age to
match the (eventual) printed page. HER��S Paige
provides the follo��ng function to accomplish this:

pg_boolean pgSetPrintDevice (pg_ref pg, generic_var
device);

Calling this function causes all subsequent
wordwrapping and character placement in pg to match the
printed result. The device parameter should be the
printer HDC you ��ll be using to print the document.
Please note that in this case, device is an HDC and
not a graf_device.

The appropriate t��e to call pgSetPrintDevice() is
��mediately after pgNe�(), and any t��e after the user
has changed the print device or printing attributes.

FUNC��ON RESU��: If the new print device is not the
same as the previous device ��thin the pg, TRUE is
returned.

NO��: It is your responsibility to delete the printer
DC. HER��S Paige ��ll not delete the DC even if you

set it to something else or destroy the pg_ref.

CAU��ON: If you use this feature, the printer DC must
remain valid until the pg_ref is destroyed, or until
another device is set. Or, you can clear the existing
DC from the pg_ref by passing M���NULL for the
"device".

NO��S:

1. This function changes the way the text appears on
the screen, not the printer. Its one and only
purpose is to force the screen rendering to match
the printing as close as possible.

2. You should not use this function if the quality of
the screen rendering is more ��portant than the
printed quality.

-

generic_var pgGetPrintDevice (pg_ref pg);

This function returns the existing printer DC stored in
pg, previously set by pgSetPrintDevice(). If no DC
exists, M���NULL is returned.

16.9 Display Proc

(void) pgDrawPageProc (paige_rec_ptr pg, shape_ptr
page_shape, pg_short_tr_qty, pg_short_t page_nu�,
co_ordinate_ptr vis_offset, short draw��ode_used,
short call_order);

The purpose of pgDrawPageProc is to give the app a
chance to draw "page stuff" such as grey outlines
around page margins, and/or in the demo's case, it
draws outlines around containers. Other ornaments can
be drawn such as floating pictures—the demo uses this
function to draw picts that are anchored to document
(as opposed to picts embedded into text).

pgDrawPageProc is actually the default procedure for
the dra��page_proc, see "dra��page_proc".

This function only gets called from pgDisplay and/or
from internal display follo��ng a ScrollRect. It is not
called when typing/display of keyboard inserts. The
function is called after all text is drawn and just
before returning to the app.

If called from pgDisplay, the clip region is set to the
vis_area of pg. If called from pgScroll the clip is
set to the scrolled "white" space.

This function can appear more complex than it is when
you have irregular page_area shapes and/or repeating
shapes. But all that is happening is that
pgDrawPageProc gets called once for each "page"
regardless of how many rects are inside your page_area
shape.

Assume the s��plest case: a pg_ref ��th a single
rectangle for page_area and nonrepeating (i.e. one long
rectangular document). In this case, pgDrawPageProc is
called ONCE after dra��ng text in pgDisplay (see param
description belo�).

Assume the next most s��ple case, which is a single
rect page area but V_REPEA��B�� set. In this case,
pgDrawPageProc gets called for � number of t��es, where
� is the number of "repeats" that appear in the
vis_area.

But here's what ��ght be confusing: pgDrawPageProc
a��ays gets called once only if non-repeating shape,
and � t��es if repeating, regardless of how many
"containers" you have (how many rects comprise the
page_area shape). If you have multiple rects such as
columns or containers, it is up to your pgDrawPageProc
to do whatever it needs to, say, draw an outline around
each rect. The fact that pgDrawPageProc ��ght get
called more than once depends purely on V_REPEA��B��
being set or not.

If you ��agine page_area as being one thing, i.e. a
"page," then pgDrawPageProc makes the most sense.

Stated s��ply, if you had one huge monitor that showed
3 "pages" (3 occurrences of shape repeat),
pgDrawPageProc gets called 3 t��es. It doesn't matter
how complex the shape or how many columns/containers,
etc.

The meaning of each parameter in pgDrawPageProc() is as
follows:

page_shape - is a pointer to the ��rst rectangle in the
page_area shape. This ��ll literally be a used pointer
to the page_area's first rect (a shape is a series of
rectangles). The rect(s) are u�a�tered (they are
unchanged as you set them in the pg_ref, i.e. the are
neither "scrolled" nor scaled).

r_qty — contains number of rects that page_shape
points to.

NO��: This �s �ot how many "repeating
occurrences" exist for repeating shape mode,
rather how many physical rects page_shape
points to. This ��ll a��ays be at least 1. For
s��ple docs, it ��ll be 1 (rect); for a three-
column doc it ��ll probab�y be 3, and so on.
For example, if your page shape had three
rects representing columns, the "column rects"
could be accessed as page_shape[0],
page_shape[1], and page_shape[2]. S��ply
stated, page_shape for r_qty rects represents
the unscaled/unscrolled/original page_area of
pg.

page_num — contains the logical "page" number for which
the function is intended, the first page being "1".
This is a �og�ca� number, not a physical rect element
(r_qty ��ght only be "1" but page_num could be 900).
Note that this parameter makes more sense if you have
repeating shapes, other��se it is a��ays "1". As
mentioned above, if the doc has repeating shapes,
HER��S Paige makes repetitive calls to pgDrawPageProc
for as many shape-repeats as ��ll fit in the vis_area.
Also note that page_num can be literally interpreted as
"page number" as it represents the �th repeat of the
shape. That also means that if the doc is scrolled to,
say, page 100, the first call to pgDrawProc ��ll
probably be 100—�ot "1". Lastly, note that page_shape
points to the sa�e rects for every repetitive call to
pgDrawPageProc.

vis_offset — the amount you would need to "offset" each
rect in page_shape to achieve the correct visual screen
position for page number page nu�. As stated above,
page_shape points to unscrolled rect(s). Suppose you
wanted to use pgDrawPageProc to draw page margins.

Because the doc ��ght be scrolled and/or because the
"page" ��ght be the �th repeating of the shape, you
can't just do FrameRects—you need to offset each rect
by vis_offset amount. This amount also includes the
repeat element, i.e. it is supplied to you ��th extra
amounts based on page_num. Hence, all rects in
page_shape offset by vis_offset are p�ys�ca� screen
locations for page_num.

draw��ode_used — the draw��ode that was used by HER��S
Paige just before it called pgDrawPageProc. The
intended purpose of this is to let an app know if it
did a bi��ap draw of text. There are �uture cases where
an extension ��ll need to know that for opt���sation.

EXAMPLE: Background picts that get drawn directly into
the offscreen bi��ap along ��th text—have already been
drawn before pgDrawPageProc gets called. Hence, it
would be useful for the app to know this so that it
would not draw picts unless draw��ode_used was non-
bi��ap.

call_order — tells you how many t��es pgDrawPageProc
has been called so far in this display loop. For
example, if you call pgDisplay for a doc that has
repeating shape, pgDrawPageProc ��ght get called 2 or 3
t��es (one for each "page"). The call_order parameter
gives you info regarding this. If zero, it is the first
call of several; if positive and non-zero, it is the
�th call but there ��ll be at least one more; if
negative, it is being called for the last t��e. One
thing I use this for is dra��ng floating picts—I don't
want to draw pictures until pgDrawPageProc is being
called for the LA�� t��e.

17 HER��S Paige ��PORT EX��NSION
(for "R��" and other types)

The HER��S Paige ��port extension provides high-level
functionality for ��porting ASCII files, other HER��S
Paige files and Rich Text Format (R��) files. Although
it is designed as a C�� framework, files can be
��ported from straight C if necessary.

17.1 Installation

NO��: The installation procedure mentions the
directory, pgtxr.

If you are installing the ��porter for the Macintosh
platform and/or for ��n16 or ��n32 and are not using
��C, s��ply add the follo��ng files from the pgtxr
directory to your project:

��n��um configuration (��port ASCII text only)

pg��port.cpp
pgdeftbl.c

Native HER��S Paige File ��port (in addition to above)

pgnative.cpp

R�� File ��port (in addition to ��n��um Configuration)

pgrtfdef.c
pgrtf��p.cpp

Header Files

If you ��ll be ��porting files using C���

��nclude "pgtxrcpp.h"

If you ��ll be ��porting only from straight C:

��nclude "pgtxr.h"

17.2 ��porting Files (from C��)

CU��OM CONTROL USERS: There are (intentionally) no
control messages that support the HER��S Paige ��port
extension. Use the method shown below; also, see
section 17.9, ��porting to the HER��S Paige Custom
Control.

Loading a file ��th this extension can be accomplished
in a few easy steps:

1. Start ��th an existing pg_ref or HER��S Paige
control as the target document to receive the
��port. This may be a, empty document or a document
which already has text (in which case the file
contents ��ll be inserted at the current insertion
point).

2. To ��port from a disk file, open the file you ��sh
to ��port. To ��port from memory, allocate the
memory and fill its contents ��th the appropriate
file data. If you are starting ��th a Macintosh
Handle or ��ndows HGLOBAL you can convert it to a
memory_ref by calling HandleToMemory().

3. Create a new object (��th new keyword) of the
appropriate type for the file. (If you aren't sure
about what type of file you just opened, see
section 17.3, Deter��ning File Type. Currently, we
support raw text files, R�� files, and files in
HER��S Paige's native format. The follo��ng is an
example of creating an appropriate ��port object:

��nclude "pgTxrCPP.h"
Paige��portObject filter;

�� To ��port a plain ASCII text file:
filter = new Paige��portFilter();

�� To ��port an R�� file:
filter = (Paige��portObject) new
PaigeR����portFilter();

�� To ��port an HER��S Paige file:
filter =(Paige��portObject) new
PaigeNative��portFilter();

file:///Users/nick/Documents/Hermes-Paige/Hermes-Paige/DOCS/17.9-importing-to-the-hermes-paige-custom-control
file:///Users/nick/Documents/Hermes-Paige/Hermes-Paige/DOCS/17.9-importing-to-the-hermes-paige-custom-control

4. Call the initialisation member function
pgInit��portFile(). This function is defined as
follows:

pg_error pglnit��portFile (pg_globals_ptr
globals, pg_file_unit fileref, memory_ref
memory_unit, file_io_proc read_proc, long
first_position, long last_position);

This function prepares for ��porting a file,
setting up whatever is necessary for the file's
native format. A file can be ��ported from a
physical file, or from memory. This is
differentiated by the value(s) you pass in the
function parameters, as follows:

globals - A pointer to your HER��S Paige
globals. Custom control users can get a pointer
to the HER��S Paige globals as follows:

1. Getting the pg_ref from the control by
sending a PG_G��PGREF message, and

2. Calling the HER��S Paige API,
pgGetGlobals().

fileref - If ��porting from a file on disc,
this parameter must be a reference to the
opened file (the refNum for Mac��tos� or a
file handle for ���dows). If ��porting from
memory, fileref should be zero. ��C users on
���dows should note that the fileref parameter
must be a "real" HFILE (or NULL if ��porting
from memory), not some other ��C-generated
class member that you may assume is a file
handle.

memory_unit — If ��porting from a file on
disc, this parameter must be M���NULL. If
��porting from memory, this must be a
memory_ref (see chapter 25, The Allocation
Manager). ��porting from memory requires that
memory_unit contains the same information in
the same format as it would if it were a disk
file.

read_proc — This is an optional I/O function
to be used instead of the default low-level

reading function. Refer to the HER��S Paige
Programmer's Guide for information about custom
I/O functions. For reading a standard file from
disk or memory, pass NULL for this parameter.

first_position, last_position — These ��o
values indicate the beginning and ending file
positions to ��port, respectively. The
first_position can be zero or some other byte
offset into the file to begin reading. If
last_position is unknown (or if you want to
read the file whole), pass UNKNOWN_POS���ON
for last_position. Other��se, the file ��ll be
��ported from byte offset first_position to,
but not including the byte at last_position.
FUNC��ON RESU��: If this function is
successful, zero is returned, other��se an
error code is returned.

5. To read the file and insert its contents into an
HER��S Paige document, call the member function,
pg��portFile():

pg_error pg��portFile (pg_ref pg, long
pg_position, long ��port_flags, pg_boolean
keep_selection, short draw��ode)

pg — The target document. Custom control
users: obtain the pg_ref by sending a
PG_G��PGREF message.

pg_position — The text position (in the HER��S
Paige document) to receive the insertion. If
this value is CURREN��POS���ON, the file ��ll
be ��ported to the current insertion.

��port_flags — A set of bits defining which
ite�(s) to ��port, which can be any or all of
the data types shown belo�. (Note, setting
these bits causes that data item to ��port only
if supported by the ��porter).

#define ��POR��EVERYTHING_FLAG
0x00FFFFFF �� ��port everything
#define ��PORT���X��FLAG
0x00000001 �� ��port raw text

#define ��PORT���X��FORMA��_FLAG
0x00000002 �� ��port text formats
#define ��POR��PAR_FORMA��_FLAG
0x00000004 �� ��port paragraph formats
#define ��POR��PAGE_INFO_FLAG
0x00000008 �� ��port page information
#define ��POR��CONTAINERS_FLAG
0x00000010 �� ��port container boxes
#define ��POR��HEADERS_FLAG
0x00000020 �� ��port headers
#define ��POR��FOO��RS_FLAG
0x00000040 �� ��port footers
#define ��POR��FOOTNO��S_FLAG
0x00000080 �� ��port footnotes
#define ��POR����BEDDED_OBJEC��_FLAG
0x00000100 �� ��port embedded graphics
#define ��POR��PAGE_GRAPHICS_FLAG
0x00000200 �� ��port page pictures
#define ��POR����YLESHE���_FLAG
0x00000400 �� ��port style sheets

In addition to the above, setting the follo��ng
bit causes page d��ensions (paper size,
margins) to get applied:

#define APPLY_PAGE_D���NSIONS 0x02000000
�� Apply page size(s)
#define ��POR��CACHE_FLAG
0x04000000 �� Page-read the file

If APPLY_PAGE_D���NSIONS is set, the pg_ref's
page shape is changed per the ��port
information (if such information is supported).
For example, when ��porting an R�� file,
setting APPLY_PAGE_D���NSIONS ��ll apply the
page size(s) found in the R�� information. If
this bit is not set, the page area remains
unchanged. If ��POR��CACHE_FLAG is set, the
file is opened in "paging" mode, i.e. its text
is not read all at once; rather, its text
sections are read as needed. This is
particularly useful for opening very large
files.
NO��: ��POR��CACHE_FLAG is only supported for

HER��S Paige and ASCII text files. (See 2.0b
release notes, "Huge File Paging”)

keep_selection — If TRUE, the selection point
in the text does not advance, other��se the
selection point in the document advances by the
number of bytes that were ��ported.

draw��ode — If non-zero, the document is
redrawn sho��ng the new data contents;
other��se, nothing is redrawn.
FUNC��ON RESU��: If this function is
successful, zero is returned, other��se an
error code is returned.

6. Delete the object, or if you want to ��port another
file, repeat steps 4 through 5.

��port File Example

��nclude "pgTxrCPP.h"

/* This function ��ports a file into a pg_ref,
first creating an object for the appropriate file
type. If all is well, the document is re-drawn and
NO_ERROR is returned. */

pg_error ��portFile (pg_ref pg, pg_filetype
filetype, long feature_flags, long file_begin,
pg_file_unit f_ref)
{

Paige��portObject filter;
pg_globals_ptr globals;
long flags;
pg_error result = NO_ERROR;

if (!(flags = feature_flags))
flags = ��POR��EVERYTHING_FLAG;
globals = pgGetGlobals(pg);

s��tch (filetype)
{

case pg_text_type:
filter = new

Paige��portFilter();
break;

case pg_rtf_type:

filter = (Paige��portObject)
new

PaigeR����portFilter();
break;

case pg_paige_type:
filter = (Paige��portObject)

new
PaigeNative��portFilter();
break;

default:
return (pg_ERROR)

BAD��YPE_ERR;
}

if((result = filter �� pgInit��portFile

17.3 Deter��ning File Type

There ��ght be cases where the file type is unknown
and/or you want to verify that a file is truly the type
that you expect. There is a function you can call to
deter��ne the type:

pg_filetype pgDeter��neFileType (pg_file_unit
fileref, file_io_proc io_proc, long
starting_position)

NO��: Calling this function exa��nes the appropriate
contents of a file looking for a signature recognized
by one of the support file ��port classes. The actual
file contents are exa��ned to deter��ne the type.

fileref — An opened file reference (the "refNum" for
Macintosh or file handle for ��ndows).

io_proc — The low-level function to perform I/O. This
is described in the HER��S Paige Programmer's Guide.
Except for ��plementing very special features, usually
you should pass NULL for this parameter.

starting_position — Indicates the file position you
��ll (eventually) begin ��porting.

This function ��ll a��ays return one of the follo��ng
types:

��nclude "pgTxr.h"

enum

{
pg_unknown_type, �� Unknown file type
pg_text_type, �� Standard ASCII

text
pg_rtf_type, �� Rich text format
pg_paige_type, �� Standard HER��S Paige

file type
}

NO��: An unrecognised file ��ll usually return as
pg_text_type because a text file is considered to be
practically anything. For this reason,
pgDeter��neFileType() ��ll first check for pg_rtf_type
and pg_paige_type before deciding it is s��ply a text
file.

17.4 Deter��ning the Feature Set

You can deter��ne what data type(s) are supported by
the ��porter if you exa��ne object �� feature_bits
��mediately after creating the ��port object. This
member ��ll be initialised to some combination in list
shown on the follo��ng page:

��PORT���X��FEATURE Can
��port raw text
��PORT���X��FORMA��_FEATURE Can ��port
styled text

��POR��PAR_FORMA��_FEATURE Can ��port
paragraph formats
��POR��PAGE_INFO_FEATURE Can ��port
page d��ensions
��POR��CONTAINERS_FEATURE Can ��port

containers
��POR��HEADERS_FEATURE Can ��port
headers
��POR��FOO��RS_FEATURE Can ��port

footers
��POR��FOOTNO��S_FEATURE Can ��port
footnotes
��POR����BEDDED_OBJEC��_FEATURE Can ��port supported
embed_refs

��POR��PAGE_GRAPHICS_FEATURE Can ��port page-
layour graphics
��POR��CACHE_FLAG Can

disc-page the file

Example

Paige��portObject filter;

filter = (Paige��portObject) new
PaigeR����portFilter();

if (!(filter �� feature_bits &
��POR����BEDDED_OBJEC��_FEATURE))

AlertUser("Any pictures in document ��ll be
lost. Open anyway?")

17.5 Cross-Mapping Font Tables

The HER��S Paige ��porter extension provides a default
mapping table for font names when you ��port a file
generated from another platfor�. For any font name that
is ��ported, if a match is found in the table then the
suggested substitute name is used; if no match is
found, the default font name (defined in HER��S Paige
globals) is used instead. The assumption is that the
font name won't exist in the target platfor�.

You can override the defaults in one of ��o ways:

1. Substitute your own pointer to a font mapping table
(see belo�). You can substitute your own table
after the Paige��portFilter object is created. For
example:

Paige��portObject filter;

filter = (Paige��portObject) new
PaigeR����portFilter();
filter �� font_cross_table =
(pg_char_ptr)�yOwnFon��able;

2. Override the font mapping member function. The
function that maps font substitution can be
overridden if you subclass the desired ��port
structure. The font mapping function is declared
as:

virtual void pgMapFont (font_info_ptr font,
long ��porting_os, long current_os);

- Upon entry, "font" is the font_info pointer in
question. The ��porting_os and current_os define
the platform of the ��porting file and the current
(runt��e) platfor�, respectively. These platform
definitions ��ll be one of the follo��ng:

#define MACINTOSH_OS 1
#define ��NDO��_OS 2
#define UNIX_OS 3

- To substitute a font, s��ply change font �� name
before returning from the function.

CAU��ON: The font name, by default, is a pascal string
(first byte is its length). If you replace it ��th a
cstring you must set font��environs to NA��_IS_C��R.

If you want no font mapping at all, set the object's
member "font_cross_table" to NULL after creating it.

Font Table Format

The font mapping table is a table of null-ter��nated
text strings. Each entry (del���ted by a null
character) is ordered in ascending alphabetical order,
the last entry is ter��nated ��th \ff (see default
tables belo�). Each entry contains a font name (��th
possible asterisk * ��ldcard) followed by a substitute
name in square brackets [].

EXAMPLE 1:

"��ngDings[Zapf Dingbats]\0"

If the ��ported font name is "��ngDings" then
substitute "Zapf Dingbats".

EXAMPLE 2:

"T��es*[���es]\0"

If ��ported font's first five characters are "T��es"
then substitute "T��es". (Hence, both “T��es New Roman”
and “T��es Roman” would be subtitled ��th “T��es”).

17.6 Default Font Tables

��porting to Macintosh (and file is from
��ndows)

static pg_char cross_font_table[] =
{

"Arial*[Helvetica]\0"
"Book*[Bookman]\0"
"Century Gothic[Avant Garde]\0"
"Century Sch*[New Century Schoolbook]\0"
"Courie*[Courier]\0"
"Fixedsys[Chicago]\0"
"Helvetic*[Helvetica]\0"
"Monotype Cors*[Zapf Chancery]\0"
"�� S*[Geneva]\0"
"Roman[New York]\0"
"Script[Zapf Chancery]\0"
"��all Fonts[�onaco]\0"
"Ter��nal[�onaco]\0"
"T��es*[���es]\0"
"��ngdings[Zapf Dingbats]\0"
"\ff"

};

��porting to ��ndows (and file is from
Macintosh)

static pg_char cross_font_table[] =
{

"Avant Garde[Arial]\0"
"Bookman[���es New Roman]\0"
"Chicago[FixedSys]\0"
"Courier[Courier Ne�]\0"
"Geneva[�� Sans Serif]\0"
"Helvetica[Arial]\0"
"Monaco[Courier Ne�]\0"
"Helvetic*[Arial]\0"
"New York[�� Serif]\0"
"Palatino[Arial]\0"
"Symbol[��ngDings]\0"
"T��es[���es New Roman]\0"
"Zapf Chancery[Script]\0"
"Zapf Dingbats[��ngDings]\0"
"\ff"

};

17.7 Character Mapping

The ��porting mechanism ��ll also map ASCII characters
> 0x7F. If you ��sh to override the defaults you should
subclass the ��port class and override the follo��ng
function:

virtual void pgMapChars (pg_char_ptr c hars, long
nu��chars, long file_os, long current_os);

This function gets called after each block of text is
��ported. Upon entry, chars points to the block of text
and nu��chars defines the number of bytes. The file_os
and current_os define the platform of the ��porting
file and the current (runt��e) platfor�. The possible
values for these ��ll be one of the follo��ng:

#define MACINTOSH_OS 1
#define ��NDO��_OS 2

#define UNIX_OS 3

You can also override the character mapping by
substituting your own character mapping table. The
character mapping table is a series of unsigned
characters, each entry representing consecutive
characters from 0x80 to 0xFF.

For example, if the first three bytes being ��ported
were 0x80, 0x81, and 0x82, the follo��ng character
mapping table would cause 0xAA, 0xBB, and 0xCC to be
inserted into the HER��S Paige document:

unsigned char mapping_table[]=
{

0xAA, 0xBB, 0xCC, ���
}

An entry in the mapping table of null (zero value
character) denotes that the character is not available
in the current platfor�. If so, the unknown_char member
in paige_globals is used.

To substitute your own mapping table, first create the
��port object then change object �� character_table.

EXAMPLE:

Paige��portObject filter;
filter = (Paige��portObject) new
PaigeR����portFilter();
filter �� character_table =
(pg_char_ptr)�yOwnCharTable;

17.8 ��porting from C

CU��OM CONTROL USERS: There are (intentionally) no
control messages that support the HER��S Paige ��port
extension. Use the method shown below; also, see
section 17.9, ��porting to the HER��S Paige Custom
Control. If you need to ��port a file from a non-C��
environment—or if you want to ��port a file from a
single line of code—you can do so by calling the
follo��ng function:

pg_error pg��portFileFromC (pg_ref pg, pg_filetype
filetype, long feature_flags, long file_begin,
pg_file_unit f_ref)

This function ��ports a file of type filetype into pg.
The filetype parameter must be one of the follo��ng:

pg_text_type, �� Standard ASCII text
pg_rtf_type, �� Rich text format
pg_paige_type �� Standard HER��S Paige
file type

The feature_flags parameter indicates which data
type(s) you want to ��port, which can be any of the
follo��ng bit settings:

#define ��POR��EVERYTHING_FLAG
0x00FFFFFF �� ��port everything
#define ��PORT���X��FLAG
0x00000001 �� ��port raw text
#define ��PORT���X��FORMA��_FLAG
0x00000002 �� ��port text formats
#define ��POR��PAR_FORMA��_FLAG
0x00000004 �� ��port paragraph formats
#define ��POR��PAGE_INFO_FLAG
0x00000008 �� ��port page information
#define ��POR��CONTAINERS_FLAG
0x00000010 �� ��port container boxes
#define ��POR��HEADERS_FLAG
0x00000020 �� ��port headers
#define ��POR��FOO��RS_FLAG
0x00000040 �� ��port footers
#define ��POR��FOOTNO��S_FLAG
0x00000080 �� ��port footnotes
#define ��POR����BEDDED_OBJEC��_FLAG 0x00000100
�� ��port embedded graphics
#define ��POR��PAGE_GRAPHICS_FLAG
0x00000200 �� ��port page pictures
#define ��POR����YLESHE���_FLAG
0x00000400 �� ��port style sheets

In addition to the above, setting the follo��ng bit
causes page d��ensions (paper size, margins) to get
applied:

#define APPLY_PAGE_D���NSIONS 0x02000000 ��
Apply page size(s)

#define ��POR��CACHE_FLAG 0x04000000
�� Page-read the file

The file_begin parameter indicates the first file
position to begin reading.

The f_ref parameter must be a reference to an opened
file (refNum for Mac, file handle for ��ndows).

If this function is successful, the contents of the
file are inserted into the current position of pg and
the document is redrawn and NO_ERROR (0) is returned.
Other��se the appropriate error code ��ll be returned.

17.9 ��porting to the HER��S Paige
Custom Control

There is no message-based support in the custom control
to ��port a file using the methods shown in this
document; the lack of message-based ��porting is an
intentional o��ssion to allow optional compiling of the
��port classes independent of the control. To ��port a
file into the custom control, you may s��ply obtain the
pg_ref using the PG_G��PGREF message.

However, ��porting a file into a control can cause an
out-of-sync situation ��th scrollbar positions,
pagination, etc., so you should a��ays send the
follo��ng message ��mediately after ��porting a file:

SendMessage(hwnd, PG_REALIZE��POR�, wPara�, 0);

The PG_REALIZE��PORT message informs the control that
you have ��ported a file and that it should make any
adjus��ents necessary to reflect those changes.

If wParam is TRUE the control repaints itself.

17.10 The Paige��portFilter: Overrideables

class Paige��portFilter
{

public:
pg_char_ptr font_cross_table; �� Table of

cross-fonts
pg_char_ptr character_table; �� Table of

cross-chars

�� Overrideable member functions (higher
level):

virtual pg_error pgVerifySignature(void);
virtual pg_error pgPrepareSignature(void);
virtual pg_boolean pgReadNextBlock(void);
virtual pg_error pg��portDone();
virtual void PG_FAR * pgProcess��bedData

(�emory_ref ref, long embed_type);
virtual void pgMapFont (font_info_ptr font,

long ��porting_os, long current_os);
virtual void pgMapChars (pg_char_ptr chars,

long nu��chars, long file_os, long current_os);
};

NO��: All of the class definitions are not shown. Only
the members of potential interest and usefulness are
given. For a complete description of this class, see
pgtxrcpp.h.

Member-by-Member Description

font_cross_table — A pointer to the font mapping table.
See section 17.5, Cross-Mapping Font Tables.

character_table — A pointer to the character mapping
table (for characters > 0x7F). See section 17.7,
Character Mapping.

pg_error pgVerifySignature() — Called to verify if the
file about to be ��ported contains valid contents for
the supported type. For example, pgVerifySignature()
for the R�� class checks for the existence of the
keyword \rtf at the start of the file to verify if it
is truly an R�� file or some other format. If the file
is valid, NO_ERROR should be returned, other��se return
BAD��YPE_ERR.

pgPrepare��port() — Called to make any preparations for
��porting the file. No actual file transfer is
performed, but this function should be used to
initialise private members to perform the first "read".
There are no parameters to this function. The values

taken from the application's call to pgInit��portFile()
��ll have been placed into the appropriate member
values before pgPrepare��port() is called.

pg_boolean pgReadNextBlock() — Called to ��port (read)
the next block of text. A "block of text" means a block
of one or more characters that are rendered in the same
consistent format.

For example, if the inco��ng text contained
"Bold_Plain_Ita��c", the ��port class must consider
Bold_, Plain_ and Italic_ as three separate blocks.
The first t��e pgReadNextBlock() gets called, the text
Bold_ would be returned; the next t��e Plain_ is
returned, and so forth.

Most of the text and format information must be placed
in the "translator" member of the class; this member is
a record defined as follows:

struct pg_translator
{

memory_ref data;
�� Data transferred (read) or to-transfer (�rite)

memory_ref stylesheet_table; �� Contains
list of possible style sheets

long bytes_transferred; ��
Number of bytes in buffer

long total_text_read; ��
Total transferred to-moment

style_info format;
�� Style(s) and charcter format of text

par_info par_format; ��
Paragraph format(s) of the text

font_info font;
�� Font applied to this text

pg_doc_info doc_info; ��
General document information

unsigned long flags; ��
Attributes of last transfer

pg_boolean format_changed; ��
Set to TRUE - format has changed

pg_boolean par_format_changed; �� Set to
TRUE - para has changed

pg_boolean font_changed; ��
Set to TRUE - font has changed

pg_boolean doc_info_changed; �� Set to
TRUE if document info has changed

��ported text bytes are inserted into the
translator.data memory_ref (using the appropriate
HER��S Paige Allocation Manager calls). The byte size
returned is assumed to be
Ge��emorySize(translator.data). Note, to ��plement
special features, it is acceptable to return zero bytes
for each call. Your function ��ll be called repeatedly
until you return FALSE.

For the best examples of pgReadNextBlock() consult the
source code files for each ��port class.

FUNC��ON RESU��: If there are no more bytes to
transfer, return FALSE. Note that you can return FALSE
even if the current function called transferred one or
more bytes, yet end-of-file comes after that position.
A result of FALSE indicates that pgReadNextBlock()
should not be called again.

pg��portDone() — Called when ��porting has completed.
This function essentially balances pgPrepare��port().
Anything you allocated previously in pgPepare��port()
should be disposed.

void PG_FAR * pgProcess��bedData (�emory_ref ref,
long embed_type);

Called when the ��port class has read data that is
intended for an embed_ref. (For version 1.02b of the
��port extension, this function only gets called by the
R�� ��porter.)

Upon entry, ref contains the data read from the file
and embed_type is the type of embed_ref that ��ll be
inserted. Note that the data in ref �s �ot an
embed_ref; rather, it is ra�, binary data read from the
file. The purpose of pgProcess��bedData() is to convert
that binary data into whatever form necessary to be
successfully inserted as an embed_ref.

FUNC��ON RESU��: This function must return the
appropriate data type for a subsequent creation and
insertion of an embed_ref. Note, however, that the

class that calls this function assumes that the
memory_ref ref is either no longer valid, or the same
memory_ref is returned as the function result (��th its
contents altered, for instance).

In other words, the assumption is made that the ref
parameter has been converted into something else
appropriate for the embed type, and that new data
element is returned as the function result.

For example, if the embed_type were embed��eta_file,
the appropriate function result ��ght be to create a
new HM��AFILE, set the bitstream data from ref into
the new metafile HANDLE, dispose the embed_ref and
return the new HM��AFILE.

Default Function

The default function (�hen using the R�� ��port class)
processes embed��ac_pict and embed��eta_file; if the
type is embed��ac_pict, the memory_ref is converted to
a Handle and returned as the function result. If the
type is embed��eta_file, the contents of the
memory_ref are converted to a new HM��AFILE and the
memory_ref is disposed.

See source code for the default function in
pg��port.cpp.

pgMapFont(), pgMapChars()

These are called to cross-map fonts and characters
be��een platforms. See sections 17.5, Cross-Mapping
Font Tables and 17.7, Character Mapping, for a detailed
description.

17.11 R�� ��port Overridables

There are some lower-level member functions in
PaigeR����portFilter class that you can override to
process unsupported key words:

class PaigeR����portFilter: public
Paige��portFilter
{

public;
virtual void ProcessInfoCommand (short

command, short parameter);
virtual void UnsupportedCommand (pg_char_ptr

command, short parameter);
}
ProcessInfoCommand(short command, short parameter);

ProcessInfoCommand() gets called by the R�� class when
a "document information" key word is recognised but not
processed. Upon entry, the command parameter ��ll be
equivalent to one of the values shown in the table
belo�.

The value in parameter ��ll be the numerical appendage
to the keyword, if any. For example, the key word dy23
would result in a command value of 5 (for dy) and a
parameter value of 23.

1 author
2 bupt��
3 creat��
4 doccomm
5 dy

6 ed��ns
7 hr
8 id
9 keywords
10 ��n

11 mo
12 nextfile
13 noofchars
14 nofpages
15 no��ords

16 operator
17 printt��
18 revt��
19 sec

20 subject
21 title
22 verno
23 version
24 yr

UnsupportedCommand (pg_char_ptr command, short
parameter

UnsupportedCommand() gets called by the R�� class when
a key word is encountered that is not understood. The
purpose of this overridable member function is to get
access and process R�� tokens that are not normally
supported.

Upon entry, command is a null-ter��nated string that
contains the literal command (��nus the \ prefix); the
value in parameter ��ll be the numerical appendage to
the keyword, if any. For example, the key word bonus99
would result in a command string of bonus\0 and a
parameter value of 99).

17.12 Processing Tables

Since HER��S Paige does not support the concept of
"tables" directly, ��porting a table from an R�� file
results in a tab-del���ted text stream which represents
each cell of the table. If your application requires
more extensive ��plementation of tables, there are
specific functions in the R�� ��porting class which you
may override to ��plement them differently.

Table Processing Member Functions

void BeginTable��port();

This function is called when a table is recognized in
the R�� input strea�, but no data has been processed.
The purpose of BeginTable��port() is to prepare
whatever structure(s) are necessary to process the
table.

NO��: The R�� class contains a private variable,
doing_table, which must be set to TRUE at this t��e.
Other��se, the remaining table functions ��ll never be
called.

Default ��plementation

Only table_cell, cell_setright and table_ro��end are
processed; all other key words are ignored. For
table_cell, a tab character is ��ported; for
cell_setright, a paragraph tab position is set; for
table_ro��end, a carriage return is ��ported.

The class member doing_table is set to TRUE.

pg_boolean ProcessTableCommand (short command,
short parameter);

This function is called for all table-type R�� key
words. Upon entry, command contains the table keyword
(belo�) while parameter contains the appended parameter
to the keyword, if any.

For example, the R�� key word cellx900 indicates a
cell's right position, in this case 900 (�easured in
T��PS). The command value given to this function would
be cell_setright, and parameter would be 900.

FUNC��ON RESU��: A result of "TRUE" ��plies that the
current text and formatting should be inserted into the
main document, other��se the current text and
formatting is buffered and the next text and/or key
words are read.

Table Key Words

The follo��ng values are defined in PGR��DEF.H:

enum {
table_cell = 1, �� Data that

follows is next cell
cell_setright, �� Set

cell's right side
cell_border_botto�, �� Cell's

bottom has border

cell_border_left, �� Cell's
left has border

cell_border_right, �� Cell's
right has border

cell_border_top, �� Cell's
top has border

cell_first��erge, �� First
table in range of cells to be merged

cell��erge, ��
Contents of cell are merged ��th preceding cell

cell_shading, ��
Cell is shaded */

enter_table,
table_ro��end, �� End current row

of cells
table_border_botto�, �� Table's bottom

has border
table_border_horizontal, �� Table's

content has horizontalborder
table_border_left, �� Table's

left has border

table_border_right, �� Table's
right has border

table_border_vertical, �� Table's content
has vertical border

table_border_top, �� Table's
top has border

table_spacing, /* Half the space
be��een cells in ���ps */

table_header, /* Data that follows
is table header */

table_keep_together,
table_position_left, /* Position table to

left */
table_center, �� Centre-align

table

table_left, �� Left-align table
table_right, �� Right-aligh table
table_height �� Indicates total

height of table

};

pg_boolean Inser��ableText ();

This function is called if text (cell contents) is
processed while in table mode. This function ��ll never
get called unless doing_table is TRUE and one or more
characters other than key words are read.

This function ��ll also never overlap text formats,
i.e. Inser��ableText() gets called every t��e the
character or paragraph style changes.

Upon entry, all information regarding the text and its
format can be found in the translator member of the

class:

translator.data - A
memory_ref contains the text
translator.bytes_transferred - Number of
characters in translator.data
translator.format -
Current text format (style_info)
translator.par_format - Current
paragraph format (par_info)
translator.font -
Current font (font_info)

FUNC��ON RESU��: A result of "TRUE" ��plies that the
current text and formatting should be inserted into the
main document; other��se, the current text is discarded
(and never inserted into the main document).

NO��: A result of FALSE would be necessary if you are
processing the text into a target that is not the main
document (such as a graphic picture).

Default ��plementation

The doing_table member is cleared to FALSE, then TRUE
is returned.

pg_boolean EndTable��port();

This function is called when the end of the table is
reached. The purpose of EndTable��port() is to
ter��nate the table.

FUNC��ON RESU��: If TRUE is returned, any pending text
and formatting ��ll be inserted into the main document,
other��se existing text and formatting ��ll be
discarded.

NO��: This function must clear doing_table to FALSE.

18 HER��S Paige EXPORT EX��NSION
(FOR "R��" AND OTHER TYPES)

The HER��S Paige export extension provides high-level
functionality for saving files to non-HER��S Paige
formats. Version 1.03b supports HER��S Paige format,
ASCII text format, and Rich Text Format (R��). Although
the export extension is a C�� framework, it can be
called from straight C programs if necessary.

18.1 Installation

NO��: The installation procedure mentions the
directory, pgtxr.

18.2 Macintosh and ��ndows Users

S��ply add the follo��ng files from the pgtxr directory
to your project:

��n��um configuration (export ASCII text
only):

pgexport.cpp
pgdeftbl.c

Native HER��S Paige File Export (in addition
to above)

pgnative.cpp

R�� File Export (in addition to ��n��um
Configuration)

pgrtfdef.c
pgrtfexp.cpp

If you ��ll be exporting files using C���

��nclude "pgtxrcpp.h"

If you ��ll be exporting only from straight C:

��nclude "pgtxr.h"

18.3 Exporting Files (from C��)

NO��: Export��g, in many cases, is synonymous to
sav��g. We use the term "export" only to distinguish it
from earlier methods of saving HER��S Paige files (such
as pgSaveDoc); from an ��plementation viewpoint,
however, your application can respond to Save and Save
As by "exporting" a file.

Exporting a file ��th this extension can be
accomplished in a few easy steps:

1. To export to a disk file, create and open the file
you ��sh to export. To export to memory, allocate
an empty memory_ref (using MemoryAlloc).

NO��: You can discover the recommended file type
(�acintosh) or file extension (��ndows) by exa��ning
the file_kind member of the export class — see section
18.5, File Type and Extension).

2. Create a new object (��th new keyword) of the
appropriate type for the file. Currently we support
raw text files, R�� and HER��S Paige files. The
follo��ng is an example of creating an appropriate
export object:

��nclude "pgTxrCPP.h"
PaigeExportObject filter;

�� To export a plain ASCII text file:
filter = new PaigeExportFilter();

�� To export an R�� file:
filter = (PaigeExportObject) new
PaigeR��ExportFilter();

�� To export a HER��S Paige file:
filter = (PaigeExportObject) new
PaigeNativeExportFilter();

3. Call the initialisation member function,
pgInitExportFile(). This function prepares for
exporting a file, setting up whatever is necessary
to write file's native format. A file can be
exported to a physical file, or to memory,
differentiated by the value(s) you pass in the
function parameters. The pgInitExportFile()
function is defined as follows:

pg_error pgInitExportFile (pg_globals_ptr
globals, pg_file_unit fileref, memory_ref
memory_unit, file_io_proc write_proc, long
first_position);

FUNC��ON RESU��: If this function is successful,
zero is returned, other��se an error code is
returned.

4. Call the member function, pgExportFile(). This
exports the data from a pg_ref to the file (or
memory_ref) specified in pgInitExportFile(). The
pgInitExportFile() function is defined as follows:

pg_error pgExportFile (pg_ref pg,
select_pair_ptr range, long export_flags,
pg_boolean selection_only);

- FUNC��ON RESU��: If this function is successful,
zero is returned; other��se, an error code is
returned.

5. Delete the object; alternatively, repeat steps 3
through 4 if you want to export another file.

pgInitExportFile() - Parameters

globals - A pointer to your HER��S Paige globals.
Custom control users: You can get a pointer to the
HER��S Paige globals as follows:

1. Get the pg_ref from the control by sending a
PG_G��PGREF message, and

2. Call the HER��S Paige API, pgGetGlobals().

fileref - If exporting to a disk file, this
parameter must be a reference to the opened file
(the refNum for Macintosh, or a file handle for
��ndows). If exporting to memory, fileref should be
zero. If using the ��croso�t Fou�dat�o� C�asses on
���dows, the fileref parameter must be a "real"
HFILE (or NULL if exporting to memory), not some
other ��C-generated class member that you may
assume is a file handle.

memory_unit — If exporting to a disk file, this
parameter must be M���NULL. If exporting to memory,
this must be a memory_ref of zero byte size (see
chapter 25, The Allocation Manager).

write proc — This is an optional I/O function to be
used instead of the default lo��evel writing
function. Refer to the HER��S Paige Programmer's
Guide for information about custom I/O functions.
For writing to standard file from disc or memory,
pass NULL for this parameter.

first_position — This value indicates the beginning
file position to write. The first_position can be
zero or some other byte offset into the file to
begin writing.

pgExportFile() - Parameters

pg - The source document. Custom control users:
obtain the pg_ref by sending a PG_G��PGREF
message.

range - The selection range (in the HER��S Paige
document) to export. This parameter is ignored,
however, if selection_only is FALSE (in which case
the whole document is exported). If range is NULL
and selection_only is TRUE, only the current
selection range is exported. If range is NULL and
selection_only is FALSE, the entire document is
exported.

export_flags — A set of bits defining which ite�(s)
to export, which can be any or all of the data
types shown belo�.

NO��: Setting these bits causes that data item to
export only if supported by the exporter.

#define EXPORT���X��FLAG
0x00000001L /* Export raw text */

#define EXPORT���X��FORMA��_FLAG
0x00000002L /* Export text formats */

#define EXPOR��PAR_FORMA��_FLAG
0x00000004L /* Export paragraph formats */

#define EXPOR��PAGE_INFO_FLAG
0x00000008L /* Export page info */

#define EXPOR��CONTAINERS_FLAG
0x00000010L /* Export container boxes */

#define EXPOR��HEADERS_FLAG
0x00000020L /* Export headers */

#define EXPOR��FOO��RS_FLAG
0x00000040L /* Export footers */

#define EXPOR��FOOTNO��S_FLAG
0x00000080L /* Export footnotes */

#define EXPOR����BEDDED_OBJEC��_FLAG
0x00000100L /* Export recognized embed_refs */

#define EXPOR��PAGE_GRAPHICS_FLAG
0x00000200L /* Export page-anchored pictures */

#define EXPOR����YLESHE���_FLAG
0x00000400L /* Export defined stylesheets */

#define EXPOR��HYPER��X��FLAG
0x00000800L /* Export hypertext links (or index,
toc). */

#define INCLUDE_LF����H_CR
0x02000000L /* Add LF ��th CR if not already */

#define EXPOR��CACHE_FLAG
0x04000000L /* Export cached file */

#define EXPOR��UNICODE_FLAG
0x08000000L /* Write text as UNICODE */

#define EXPOR��EVERYTHING_FLAG
0x00FFFFFFL /* Export everything you can */

selection_only — If TRUE, the only current
selection (or the selection specified in the range
parameter) is exported. If range is NULL and
selection_only is TRUE, only the current selection
range is exported. If range is NULL and
selection_only is FALSE, the whole document is
exported.

FUNC��ON RESU��: If this function is successful,
zero is returned, other��se an error code is
returned.

Export File Example

��nclude "pgTxrCPP.h"

/* This function exports a file from a pg_ref, first
creating an object for the appropriate file type. If
all is well, NO_ERROR is returned. */

pg_error ExportFile (pg_ref pg, pg_filetype
filetype, long feature_flags, select_pair_ptr
output_range, pg_boolean use_selection, pg_file_unit
f_ref)

{
PaigeExportObject filter;
pg_globals_ptr globals;
long flags, file_begin;
pg_error result = NO_ERROR;

if (!(flags = feature_flags))
flags = EXPOR��EVERYTHING_FLAG;
globals = pgGetGlobals (pg);

s��tch (filetype)
{

case pg_text_type:
filter = new

PaigeExportFilter();
break;

case pg_rtf_type:
filter = (PaigeExportObject)

new PaigeR��ExportFilter();
break;

case pg_paige_type:
filter = (PaigeExportObject)

new PaigeNativeExportFilter();
break;

default:
return

(pg_error)BAD��YPE_ERR;
}

if (!output_range)
file_begin = 0;

else
file_begin = output_range �� begin;

if ((result = filter ��
pgInitExportFile(globals, f_ref, M���NULL, NULL,
file_begin)) �� NO_ERROR)

result = filter �� pgExportFile(pg,
output_range, flags, use_selection);

delete filter
return result;

}

18.4 Deter��ning the Feature Set

You can deter��ne what data type(s) are supported by
the exporter if you exa��ne object �� feature_bits
��mediately after creating the export object. This
member ��ll be initialised to some combination of the
follo��ng:

#define EXPORT���X��FEATURE
0x00000001L /* Can Export raw text */
#define EXPORT���X��FORMA��_FEATURE
0x00000002L /* Can Export text formats */
#define EXPOR��PAR_FORMA��_FEATURE
0x00000004L /* Can Export paragraph formats */
#define EXPOR��PAGE_INFO_FEATURE
0x00000008L /* Can Export page d��ensions */
#define EXPOR��CONTAINERS_FEATURE
0x00000010L /* Can Export containers */
#define EXPOR��HEADERS_FEATURE
0x00000020L /* Can Export headers */
#define EXPOR��FOO��RS_FEATURE
0x00000040L /* Can Export footers */
#define EXPOR��FOOTNO��S_FEATURE
0x00000080L /* Can Export footnotes */
#define EXPOR����BEDDED_OBJEC��_FEATURE 0x00000100L

/* Can Export standard, supported embed_refs */
#define EXPOR��PAGE_GRAPHICS_FEATURE
0x00000200L /* Can Export graphics anchored to
page */
#define EXPOR��HYPER��X��FEATURE
0x00000400L /* Can Export hypertext (or index,
toc, etc. */
#define EXPOR��CACHE_FEATURE
0x00100000L /* Can Export cache method */
#define EXPOR��UNICODE_FEATURE
0x00200000L /* Can export UNICODE */

EXAMPLE:

PaigeExportObject filter;
filter = (PaigeExportObject) new
PaigeR��ExportFilter();

if (!(filter��feature_bits &
EXPOR����BEDDED_OBJEC��_FEATURE))

AlertUser("Any pictures in document ��ll be
lost. Save anyway?");

Resulting File Size

If exporting is successful, the physical end-of-file is
set to the first position beyond the last byte written
(if writing to a disk file). If exporting to memory,
the memory_ref is set to the exact size that was saved.

18.5 File Type and Extension

For ��ndows development, it may be convenient to
deter��ne what type of file extension to create (e.g.,
".txt”, “.rtf”, etc.); for Macintosh it may also be
convenient to deter��ne the default type ("��XT",
"R��_", etc.). This ��ght become increasingly ��portant
in the future if many export classes are developed.

Every export class ��ll place the recommended file type
or extension into the follo��ng member by its
constructor function:

pg_by tefile_kind[KIND_��R_SIZE]; ��
Recommended filetype

If running in a ��ndows environment, file_kind ��ll be
initialised to the recommended 3-character extension
("TXT", "R��", etc.). If running in a Macintosh
environment, file_kind ��ll get set to the recommended
4-character file type.

18.6 Exporting from C

If you need to export a file from a non-C�� environment
—or if you want to ��port a file from a single line of
code—you can do so by calling the follo��ng function:

pg_error pgExportFileFromC (pg_ref pg, pg_filetype
filetype, long feature_flags, long file_begin,
select_pair_ptr output_range, pg_boolean
use_selection, pg_file_unit f_ref);

This function exports a file of type filetype into pg.
The filetype parameter must be one of the follo��ng:

pg_text_type, �� Standard ASCII text
pg_rtf_type, �� R�� format
pg_paige_type �� Standard HER��S Paige file type

The feature_flags parameter indicates which data
type(s) you want to export, which can be any of the
follo��ng bit settings:

#define EXPORT���X��FLAG
0x00000001 �� Export raw text
#define EXPORT���X��FORMA��_FLAG
0x00000002 �� Export text formats
#define EXPOR��PAR_FORMA��_FLAG
0x00000004 �� Export paragraph formats
#define EXPOR��PAGE_INFO_FLAG
0x00000008 �� Export page info
#define EXPOR��CONTAINERS_FLAG
0x00000010 �� Export container boxes
#define EXPOR��HEADERS_FLAG
0x00000020 �� Export headers
#define EXPOR��FOO��RS_FLAG
0x00000040 �� Export footers
#define EXPOR��FOOTNO��S_FLAG
0x00000080 �� Export footnotes
#define EXPOR����BEDDED_OBJEC��_FLAG 0x00000100
�� Export recognized embed_refs
#define EXPOR��PAGE_GRAPHICS_FLAG
0x00000200 �� Export page-anchored pictures
#define EXPOR����YLESHE���_FLAG
0x00000400L �� Export defined stylesheets
#define EXPOR��HYPER��X��FLAG
0x00000800 �� Export hypertext links (or index,

toc).
#define INCLUDE_LF����H_CR
0x02000000 �� Add LF ��th CR if not already
#define EXPOR��CACHE_FLAG
0x04000000 �� Export cached file
#define EXPOR��UNICODE_FLAG
0x08000000 �� Write text as UNICODE
#define EXPOR��EVERYTHING_FLAG
0x00FFFFFF �� Export everything you can

The file_begin parameter indicates the first file
position to begin writing.

The output_range and use_selection parameters indicate
the range of text to export: if use_selection is FALSE,
output_range is ignored and the entire document is
exported. If use_selection is TRUE, the selection
specified in output_range is specified (or if NULL the
current selection in pg is used).

The f_ref parameter must be a reference to an opened
file (refNum for Mac, file handle for ��ndows).

If this function is successful, the contents of the
pg_ref are written to the file, the end-of-file mark is
set and NO_ERROR (0) is returned.

18.7 The HER��S Paige Export Filter:
Overridables

class PaigeExportFilter
{

pg_char file_kind[KIND_��R_SIZE]; ��
Recommended filetype

virtual pg_char_ptr pgPrepare��bedData
(embed_ref ref, long PG_FAR *byte_count, long PG_FAR
*local_storage);

virtual void pgRelease��bedData (embed_ref
ref, long local_storage);

virtual pg_error pgPrepareExport (void);

virtual pg_boolean pgWriteNextBlock (void);
virtual pg_error pgExportDone ();

NO��: All of the class definitions are not shown. Only
the members of potential interest and usefulness are
given. For a complete description of this class, see
pgtxrcpp.h.

Member-by-Member Description

file_kind — Contains the recommended file type (�ac) or
file extension (��ndows). This is initialised by the
class constructor.

pgPrepareExport() — Called to make any preparations for
exporting the file. No actual file transfer is
performed, but this function should be used to
initialise private members to perform the first
"write". There are no parameters to this function. The
values taken from the application's call to
pgInitExportFile() ��ll have been placed into the
appropriate member values before pgPrepareExport() is
called.

pg_boolean pgWriteNextBlock() — Called to export
(�rite) the next block of text. A "block of text" means
a block of one or more characters that are rendered in
the same consistent format.

For example, if the outgoing text contained
"Bold_Plain_Ita��c", the export class must consider
Bold_, Plain_ and Italic_ as three separate blocks.
The first t��e pgWriteNextBlock() gets called, the text
Bold_ would be provided; the next t��e Plain_ is
provided, and so forth.

The text and format information is placed in the
translator member of the class; this member is a record
as defined in the follo��ng example:

struct pg_translator
{

memory_ref data;
�� Data transferred (read) or to-transfer (�rite)

memory_ref stylesheet_table;
�� Contains list of possible stylesheets

long bytes_transferred;

�� Number of bytes in buffer
long total_text_read;

�� Total transferred to-moment
long cache_begin;

�� Beginning file offset (if cache enabled)
style_info format;

�� Style(s) and character format of text
par_info par_format;

�� Paragraph format(s) of the text
font_info font;

�� Font applied to this text
pg_doc_info doc_info;

�� General document information
pg_hyperlink hyperlink;

�� Hypertext link
pg_hyperlink hyperlink_target; ��

Target hypertext link
unsigned long flags;

�� Attributes of last transfer
pg_boolean format_changed;

�� Set to TRUE if format is different than last txr
pg_boolean par_format_changed;

�� Set to TRUE if par format different than last txr
pg_boolean font_changed;

�� Set to TRUE if font different than last txr
pg_boolean doc_info_changed;

�� Set to TRUE if document info changed since last
txr

pg_boolean hyperlink_changed;
�� Set to TRUE if a hypertext link gets added

pg_boolean
hyperlink_target_changed; �� Set to true if
hyperlink target changes

long par_format_verb;
�� Verb that indicates how to apply par_format

long par_format��ark;
�� Used ��th par��ark and verb
};

Text byte(s) are available in translator.data; the byte
size can be deter��ned ��th
Ge��emorySize(translator.data).

For each consecutive call to pgWriteNextBlock(), if
format_changed, par_format_changed, or font_changed
are TRUE then the text format, paragraph format or font

is different than the last pgWriteNextBlock() call,
respectively.

For the best examples of pgReadWriteBlock() consult the
source code files for each ��port class.

FUNC��ON RESU��: If TRUE is returned,
pgWriteNextBlock() ��ll get called again if there is
any more text to export; if FALSE is returned,
exporting is aborted.

pgExportDone() — Called after exporting has completed.
This function essentially balances pgPrepareExport().
Anything you allocated previously inpgPepareExport()`
should be disposed.

pg_error pgPrepare��bedData() — Called to prepare
embed_ref data to be exported. The purpose of this
function is to make any data conversions necessary to
provide a serialised, binary stream of data to be
exported.

Upon entry, the ref parameter is the embed_ref that is
about to be exported. This function needs to return a
pointer to byte stream to transfer and the byte count
of the byte stream should be stored in *byte_count.

The local_storage parameter is a pointer to a long
word; whatever is placed in *local_storage ��ll be
returned in pgRelease��bedData(), belo�. The purpose of
this parameter is to provide a way for
pgPrepare��bedData() to "remember" certain variables
required to un-initialise the embed_ref data (for
example, *local_storage ��ght be used to save a HANDLE
that gets locked, hence it can be unlocked when
pgRelease��bedData() is called).

Default Function

The default pgPrepare��bedData() function processes a
Mac picture by locking the PicHandle and returning a
de-referenced pointer to the PicHandle contents; if the
runt��e platform is ��ndows, a metafile is processed by
returning the metafile bits.

pgRelease��bedData() is called to balance a previous
call to pgPrepare��bedData(). The purpose of this
function is to deïnitialise anything that was done in

pgPrepare��bedData(), and it gets called after the
embed_ref data has been exported.

Upon entry, the ref parameter is the embed_ref, the
local_storage parameter ��ll contain whatever value was
set in *local_storage during pgPrepare��bedData().

18.8 R�� Export Overrideables

The R�� export class is derived from PaigeExportFilter
and has some R��-specific functions that can be
overridden as well as data members that may prove
usefrul:

class PaigeR��ExportFilter : public
PaigeExportFilter
{

public:
virtual pg_error OutputHeaders ();
virtual pg_error OutputFooters ();
virtual pg_error Output��bed ();
virtual pg_error

OutputCustomParams();

pg_char def_stylename[FON��SIZE +
BO��HEADER]; �� Default "normal" stylesheet name
}

This member function is called to export document
headers; the default function does nothing (since
HER��S Paige does not directly support headers). To
��plement this feature (in terms of export), see
section 18.10, Custom R�� Output.

pg_error OutputFooters ();

This member function is called to export document
footers; the default function does nothing (since
HER��S Paige does not directly support footers). To
��plement this feature (in terms of export), see
section 18.10, Custom R�� Output.

pg_error Output��bed();

This member function gets called to export an
embed_ref. Upon entry, the embed_ref to be exported is
available as:

this �� translator.format.embed_object;

The default function handles the "supported" embed_ref
types — embed��ac_pict and embed��eta_file. To
��plement exporting of other types, you need to
override this function and handle the data transfer in
some way that is appropriate.

OutputCustomParams();

This function gets called after all text and paragraph
formatting attributes have been exported, but before
any text has been exported for each call to
pgWriteNextBlock(). The purpose of this function is to
output additional formatting information.

For example, HER��S Paige 3.0 does not support
paragraph borders, but if they were ��plemented by your
application you ��ght want to output border information
when appropriate.

The default function does nothing; to write your own
R�� data, see section 18.10, Custom R�� Output.

18.9 Lower-level Export Member
Functions

Typically, to create new or custom export classes, you
would override PaigeExportFilter (or a subclass
thereof). When you do so, the follo��ng lower-level
member functions are available to assist you in
exporting data to the target file:

void pgWriteByte (pg_char the_byte);

This sends a single byte to the output file.

pgWriteNBytes (pg_char_ptr bytes, long nu��bytes);

This sends to the output file; the bytes are taken from
the bytes pointer.

void pgWriteDec��al (short dec��al_value);

Sends an ASCII representation of dec��al_value to the
target file. For example, a binary value of -2 would be
sent out as (ASCII) "-2". All leading zeros are
suppressed (i.e., a value of 1 is sent as "1", not
"000001").

void pgWriteHexByte (pg_char the_byte);

Sends a hex representation of the_byte to the target
file. For example, a binary value of 0x0A would be sent
out as (ASCII) "0A".

void pgWriteString (pg_char_ptr the_str, pg_char
prefix, pg_char suffix);

Sends the contents of the_str (a null-ter��nated
string) to the output file. If prefix is non-zero, that
byte is sent first before the contents of the string
are sent; if suffix is non-zero, that byte is sent
after the contents of the_str is sent.

18.10 Custom R�� Output

If you have derived a new class from
PaigeR��ExportFilter, the follo��ng member functions
are available to assist you ��th exporting custom R��
data:

void WriteCommand (pg_char_ptr rtf_table, short
table_entry, short PG_FAR *parameter, pg_boolean
del��eter);

WriteCommand ��ll write an R�� token word, followed by
an optional parameter value and character del���ter to
the output file.

The table parameter should be a null-ter��nated string
containing one or more token word entries, each entry
separated by a single space character. The table_entry
parameter must indicate which of these elements to
write.

NO��S:

1. The first element is 1, not zero.

2. The "token" entries in this string have no
significance to this function; rather, the �th
element (table_entry) of the space-delineated table
is merely written to the output file.

The token word must not contain any special command
character — only ASCII characters less than 0x7B
should be contained in this string, and the token
word must ter��nate ��th a space character (the
space character is not sent to the output). This
function ��ll automatically prefix the token word
output ��th the R�� command character ("\").

If parameter is non-NULL, then the value in
*parameter is appended to the output as an ASCII
numeral. For example, if the token were bonus and
*parameter contained a value of 3, the resulting
output would be: \bonus3

If del��eter is TRUE, a single space character is
output follo��ng the token word; other��se no extra
characters are output.

EXAMPLE 1

pgWriteCommand((pg_char_ptr) "border \0", 1, NULL,
FALSE);

OUTPUT

"\lborder "

EXAMPLE 2

short param;
param = 24;
pgWriteCommand((pg_char_ptr) "border \0", 1,

¶�, TRUE);

OUTPUT:

"\border24 "

EXAMPLE 3

pg_char custo��table[] = {"comment footer footerl
footerf footerr footnote "};
pgWriteCommand(custo��table, 6, NULL, TRUE);

OUTPUT:

"\footnote "

OutputCR (pg_boolean unconditional);

OutputCR outputs a hard carriage return. If
unconditional is FALSE, the carriage return is not
output unless no carriage returns have been output
during the last 128 or more characters; if
unconditional is TRUE, the carriage return is output
no���thstanding the previously output characters.

short PointConversion (short value, pg_boolean
convert_resolution, pg_boolean x10);

PointConversion converts value to points and/or
decipoints (a decipoint is a tenth of a point). If
convert_resolution is TRUE, the value given to this
function is converted to points (1/72 of an inch or
equivalently 1/12 of a pica) based on the current
screen resolution setting. If x10 is TRUE, the
resulting output is multiplied t��es 10 before being
returned as the function result.

Hence, if value is a screen size value (for example,
the pixel ��dth of a graphic), passing TRUE for both
convert_resolution and x10 would result in a true
decipoint conversion.

19 PARAGRAPH BORDERS AND SHADING

19.1 Borders

A "paragraph border" is a frame drawn around one or
more paragraphs and is part of the paragraph format
(par_info) definition.

Paragraph borders are defined as four potential sides
to a frame. Any one side may be drawn or not. Hence, a
paragraph border can be defined to show only part of
the frame (such as the bottom side), or ��o sides, or
all four sides, etc.

Setting a Border

Borders are set by changing the "table" structure
��thin the par_info structure, as shown belo�. Applying
the par_info to the desired portion of the text ��ll
render the affected paragraphs ��th that border
definition:

struct par_info
{

�� various members in par_info

pg_table table; �� Table and border info

�� more members in par_info
};

The table member contains information for both tables
and paragraph borders:

struct pg_table
{

�� various members of pg_table

long border_info; �� Borders for
paragraph

�� more members of pg_table
};

NO��: The pg_table record, generally used for defining
table formats, also contains the definition for the
paragraph borders, if any. If table.table_columns is
zero, border_info is applied to the whole paragraph; if
table.table_columns is non-zero, border_info applies
to frame of the table.

If par_info.table.border_info is zero, the paragraph
has no borders. Other��se, borders are defined by one
or more of the follo��ng bit combinations:

#define PG_BORDER_LE�� 0x000000FF /*
Left border */
#define PG_BORDER_RIGHT 0x0000FF00 /*
Right border */
#define PG_BORDER��OP 0x00FF0000 /*
Top border */
#define PG_BORDER_BOTTOM 0xFF000000 /*
Bottom border */

Each of the above definitions define 8-bit fields
��thin a long word for each side of a border; which
bits you should set in each 8-bit field depends upon
the desired border effect.

In other words, the lowest-ordered byte defines the
properties of the left border line; the second lowest
byte defines the properties of the right border line;
the next higher bytes define the properties of the top
and bottom lines.

For each of these four 8-bit fields, the follo��ng
properties can be set:

Lower three bits: define the ��dth of the border line,
in pixels. This may be any value be��een 0 and 0x07,
inclusively. If the value is zero, no line is drawn;
other��se, a line is drawn 1 to 7 pixels ��de.

Upper five bits: define additional characteristics for
the line, as follows:

#define PG_BORDER_GRAY 0x00000008 ��
Grey border
#define PG_BORDER_DOT��D 0x00000010 ��
Dotted line
#define PG_BORDER_SHADOW 0x00000020 ��

Shadow effect
#define PG_BORDER_DOUBLE 0x00000040 ��
Double lines

#define PG_BORDER_HAIRLINE 0x00000080 ��
Hairline

The follo��ng border definitions are also provided that
represent commonly applied borders:

#define PG_BORDER_ALLGRAY 0x08080808 �� All
sides grey
#define PG_BORDER_ALLDOT��D 0x10101010 �� All
sides dotted
#define PG_BORDER_ALLDOUBLE 0x40404040 �� All
sides double
#define PG_BORDER_ALLSIDES 0x01010101 �� All
sides 1 pixel

#define PG_BORDER_SHADOWBOX 0x21012101 ��
Shadowbox all sides

Some of these definitions need to be combined. For
example, to obtain a four-sided double border you would
set par_info.table.border_info to:

PG_BORDER_ALLDOUBLE | PG_BORDER_ALLSIDES

To set a four-sided gray border you would use:

PG_BORDER_ALLGRAY | PG_BORDER_ALLSIDES

19.2 Paragraph Shading

Paragraph shading is an optional colour that ��ll fill
the background of a paragraph. Usually this shading
applies to table formats, yet paragraph shading can be
drawn for non-table paragraphs as well.

Shading set by changing the table structure ��thin the
par_info structure, as shown belo�. Applying the
par_info to the desired portion of the text ��ll render
the affected paragraphs ��th that shading (colour)
definition:

struct par_info
{

��� various members in par_info ���

pg_table table; �� Table and border info

��� more members in par_info ���
};

The table member contains information for both tables
and paragraph borders:

struct pg_table
{

�� various members of pg_table

long border_shading; �� Background
shading

�� more members of pg_table
};

NO��: The pg_table record, generally used for defining
table formats, also contains the definition for
paragraph shading, if any. If table.table_columns is
zero, border_shading is applied to the whole paragraph;
other��se, border_shading applies to default background
shading of the table.

If border_shading is zero, no shading is applied;
other��se, border_shading represents a "red-green-blue"
component using bi���se fields 0x00BBGGRR. The BB bits
represent the blue component of the color, the GG bits
represent the green component, and RR represents the
red component.

NO��: These bits are identical to the bits in a ���dows
COLORREF.

20 HER��S Paige HYPER��XT LINKS

20.1 General Concept

A "hypertext link" is s���lar to a character style and
can be applied to groups of characters anywhere in the
document. However, its attributes are independent to
the text and paragraph formats.

HER��S Paige maintains ��o hypertext link runs - a
source run and target run.

The hypertext link source run generally contains all
the visual links (e.g. displayed in a different colour,
underlined, and expected to provide some type of
response when the user clicks).

The target run generally contains "markers" for the
source run links to locate. In actuality, the source
and target runs are independent of each other and each
run knows nothing about the other. It is therefore the
responsibility of the application to provide logical
"linking" be��een the�.

Most of the functions and definitions are in pghtext.h;
you should therefore add the follo��ng to your code:

��nclude "pghtext.h"

20.3 Contents of a Hypertext Link

Every hypertext link is stored as a record structure
containing the follo��ng information:

Text range

The beginning and ending position of the link. This
text range is maintained by HER��S Paige as the
document is changed.

URL string

Link-specific information represented by a cstring. The
HER��S Paige API refers to this mostly as the "URL"

parameter, but in reality this is s��ply a string. Both
source and target hypertext links each contain their
own URL string; it is the application's responsibility
to understand and/or parse its contents.

Display styles

Style(s) that define how the hypertext link should be
drawn in various states. These styles are represented
by HER��S Paige stylesheet ID(s). For each link created
there are default stylesheets created; the application
can override these defaults, hence displaying the links
in any text style that HER��S Paige supports.

Note

This document makes reference to a "URL" member of the
hypertext link record. The "URL" in this sense is
merely a data string and is not to be confused ��th a
genuine ne��ork locator address (although it can be
used as such by an application).

20.4 Setting New Links

Setting Source Links

long pgSetHyperlinkSource (pg_ref pg, select_pair_ptr
selection, pg_char_ptr URL, pg_char_ptr
keyword_display, ht_callback callback, long type, long
id_nu�, short state1_style, short state2_style, short
state3_style, short draw��ode);

Purpose

Sets a new source hypertext link. A link is "set" by
applying the attributes (defined by the other
parameters in this function) to one or more characters
in the document.

Parameters

pg — The pg_ref to receive the link.
selection — An optional range of text to apply the
link. If selection is NULL, then current selection
(highlighting) is used.

URL — An optional string that ��ll get stored ��th
the link. If NULL, no string is stored; other��se,
the URL parameter is considered a cstring of any
length. The URL string can be accessed and/or
changed later by your application if necessary.
keyword_display An optional string to insert that
displays as the key word for the link. If this is
NULL, the characters contained in the selection
parameter become the "key word"; other��se, the
keyword_display parameter is inserted into the
beginning of the specified selection and the
character range of the link becomes the beginning
of that insertion + the length of keyword_display.
callback — Pointer to a callback function (�hich
you provide) that is called when the hypertext link
is clicked. If callback is NULL the default
callback function is used.
type — An optional type variable. This value can be
used by the application to distinguish be��een
different types of links.
id_num — An optional unique ID value. This can be
used for searching and connecting links. The
typical use for id_num is to set this value to a
number that exists in the same field for a target
link. You can then call
pgFindHyperlinkTargetByID().
state1_style through state3_style — Optional
stylesheet IDs that define the display attributes
for three different hypertext links states. If the
parameter is zero, the default style is used (see
belo�). The three "states" are actually arbitrary
as the application generally should control the
"state" of a link; at the lowest level, a "state"
is s��ply the choice of display style to use any
given moment.
draw��ode — The dra��ng mode to use. If dra��none,
nothing redraws.

Function result

The function returns the id_num value (�hich ��ll be
whatever was passed in id_num).

Comments

All hypertext links must include at least one character
in their selection in order to be valid. In other
words, you must not apply a hypertext link to an empty
selection (�here selection begin �� selection end). The
single exception, however, is when the keyword_display
parameter is a valid non-empty cstring. In this case,
the "selection" range becomes the current selection's
beginning + the length of keyword_display.

Default display states

State 1 (the initial state when the link is set) —
Blue ��th underline.
State 2 — Red ��th underline.
State 3 — Dark gray (no underline).

Setting Target Links

long pgSetHyperlinkTarget (pg_ref pg,
select_pair_ptr selection, pg_char_ptr URL,
ht_callback callback, long type, long id_nu�, short
display_style, short draw��ode);

Purpose

Sets a new target hypertext link. A link is "set" by
applying the attributes (defined by the other
parameters in this function) to one or more characters
in the document. A target link differs from a source
link mainly in the ��plementation from the application;
essentially, both types of links contain the same kind
of information.

Parameters

pg — The pg_ref to receive the link.

selection — An optional range of text to apply the
link. If selection is NULL, then current selection
(highlighting) is used.

URL — An optional string that ��ll get stored ��th
the link. If NULL, no string is stored; other��se,
the URL parameters are considered a cstring of any

length. The URL string can be accessed and/or
changed later by your application if necessary.

callback — Pointer to a callback function (�hich
you provide) that is called when the hypertext link
is clicked. If callback is NULL the default
callback function is used. (NO��: for target links
you ��ll usually want a NULL callback since
clicking on a target link probably requires no
special action).

type — An optional type variable. This value can
be used by the application to distinguish be��een
different types of links. For example, an index
entry (to generate an index listing) would be
different than a link to somewhere else in a
document. For convenience there are some predefined
types:

/* Hyperlink types */
#define HYPERLINK_NORMAL
0x00000001 �� Hyperlink normal
#define HYPERLINK_INDEX
0x00000002 �� Hyperlink is an index
#define HYPERLINK��OC
0x00000004 �� Hyperlink is TOC.
#define HYPERLINK_SUBJECT
0x00000008 �� Hyperlink is target subject
#define HYPERLINK_SUMMARY
0x00000010 �� Summary link (and all those
> 0x10)

�� BOG: eudora
hyperlink support

#define HYPERLINK_EUDORA_ATTACH��NT 0x00000020
�� hyperlink is an eudora attachment
#define HYPERLINK_EUDORA_PLUGIN 0x00000040
�� hyperlink is an eudora plugin
#define HYPERLINK_EUDORA_AUTOURL 0x00000080
�� hyperlink is an auto-generated url

= NO��: The R�� ��porter ��ll set HYPERLINK_INDEX
and HYPERLINK��OC for index and table-of-contents
entries where appropriate.

id_num An optional unique ID value. This can be
used for searching and connecting links. The
typical use for id_num is to initialise this value

to a unique id_num that can be searched for. If you
have created a source link to connect to this
target, that same id_num can be placed in the
target. Using the function
pgFindHyperlinkTargetByID() allows you to find a
link by the value in id_num. If the id_num
parameter is zero, pgSetHyperlinkTarget initialises
the target link id_num to a unique value (�hich
does not exist in any other target link).

display_style — Optional stylesheet ID that defines
the display attributes of the link. If the
parameter is zero the default style is used (see
belo�).

draw��ode — The dra��ng mode to use. If dra��none,
nothing redraws.

Function result

The function returns the id_num value (�hich ��ll be
the unique number chosen for the target link if the
id_num parameter was zero, or the value in id_num if
it was nonzero).

NO��: unlike setting a source link, setting a target
link automatically assigns a unique ID value if id_num
is zero. You can find this link in the document using
pgFindHyperlinkTargetByID().

Comments

All hypertext links must include at least one character
in its selection in order to be valid. In other words,
you must NOT apply a hypertext link to an empty
selection (�here selection begin �� selection end).

Default display

Target links display ��th a yellow background colour.
You can turn this display off by setting the follo��ng
attribute ��th pgSetAttributes2():

#define HIDE_HT��ARG���

This value must be set ��th pgSetAttributes2() (note
the "2").

Example

To turn off the default display so target links display
in their own native style(s), you would do the
follo��ng:

long flags;
flags = pgGetAttributes2(pgRef);
flags |= HIDE_HT��ARG���;
pgSetAttributes2(pgRef);

20.5 The Callback Function

PG_PASCAL (void) ht_callback (paige_rec_ptr pg,
pg_hyperlink_ptr hypertext, short command, short
modifiers, long position, pg_char_ptr URL);

This is the function that gets called for various
events (usually when a link is clicked). You need to
provide a pointer to your own function that handles
these events.

Parameters

pg — The paige_rec that owns the link.
hypertext — The internal hypertext link record (see
structure belo�).
command — The value defining the event (see table
belo�).
modifiers — The state of the mouse (�here
applicable). These ��ll be set to the appropriate
bits. For example if modifiers contained
EX��ND��OD_B��, the application has performed a
shift-click. This can be ��portant to deter��ne the
nature of a mouse click ��thin a link; typically
you may not want to "jump" to a link if the user is
perfor��ng a shift-click or control-click, etc.
position — The text position of the link (relative
to the beginning of the document).

URL — The URL string contained in the link. This
��ll contain the character string given to the URL
parameter when the link was created (or the string
that was set using other function calls). Note that
the URL parameter ��ll never be NULL; if you
created the link ��th a NULL pointer for URL, the
parameter at this t��e ��ll be an empty cstring.

Comments

Do not try to use the URL data from the hyperlink
parameter; use the URL parameter instead.

The hyperlink parameter points to a copy of the
original record; it is therefore safe to alter (and
even delete) the original (via the proper function
calls) even from ��thin this hook.

When responding to a hypertext link event you should
call the default source callback function if you want
the link display to change states. This function is
called pgStandardSourceCallback(); when you do so, the
link that has been clicked ��ll change its display to
state 2 and all other links in the document ��ll change
to state 1.

Example

PG_PASCAL (void) HyperlinkCallback (paige_rec_ptr
pg, pg_hyperlink_ptr hypertext, short command, short
modifiers, long position, pg_char_ptr URL)
{

�� Call the standard callback first to get
default behaviour:

pgStandardSourceCallback(pg, hypertext,
command, modifiers, position, URL);

s��tch(command)
{

case hyperlink��ousedown_verb:
�� etc
break;

}
}

Callback command values

hyperlink��ousedown_verb — Called when link is
first clicked
hyperlink_doubleclick_verb – Called if link is
double-clicked
hyperlink��ouseup_verb — Called when mouse is up
hyperlink_delete_verb — Called when link gets
deleted

20.6 Hyperlink Record Struct

struct pg_hyperlink
{

select_pair applied_range;
�� Offset(s) of source

pg_char URL[FON��SIZE + BO��HEADER]; ��
String data

memory_ref alt_URL;
�� URL (if > FON��SIZE -1)

ht_callback callback;
�� Callback function

short active_style;
�� Style to show

short state1_style;
�� Pr��ary state style

short state2_style;
�� Secondary state style

short state3_style;
�� Style to show when invalid

long unique_id;
�� Unique ID used for searching

long type;
�� Type of link

long refcon;
�� App can keep whatever
};

The applied_range member contains the current text
positions for the beginning and ending of the link. The
URL member contains the URL string if it is < FON��SIZE
- 1. Other��se, the string is inside alt_URL. The
unique_id, type, and refcon members are optional
values that can be used by the application for locating
specific links.

20.7 Finding/Locating Links

Finding by URL Strings

long pgFindHyperlinkSource (pg_ref pg, long
starting_position, long PG_FAR *end_position,
pg_char_ptr URL, pg_boolean partial_find_ok,
pg_boolean case_insensitive, pg_boolean scroll_to);

long pgFindHyperlinkTarget (pg_ref pg, long
starting_position, long PG_FAR *end_position,
pg_char_ptr URL, pg_boolean partial_find_ok,
pg_boolean case_insensitive, pg_boolean scroll_to);

These functions can be used to perform a "search" that
locates a specific link based on its URL string value.
The pgFindHyperlinkTarget function searches for a
target link while pgFindHyperlinkSource searches for a
source link.

Parameters

starting_position — The text position to begin the
search; this is a zero-indexed value.
end_position — Optional pointer to a long word. If
this is non-null, the long word gets initialised to
the text position follo��ng the link if found (the
*end_position value remains unchanged if a match is
not found).
URL — The string to search for (cstring).
partial_find_ok — If TRUE, a match is considered
valid if URL matches only the first part of the
link's URL. For example, if searching for Book, a
match ��ll be made on Book1 and Book2, etc.
case_insensitive — If TRUE, the comparison is not
case-sensitive.
scroll_to — If TRUE, the document is scrolled to
the found location.

Function result

If the link is found, the function returns the text
position where the link begins (and if *end_offset is

non-null it gets set to the link's ending position). If
no match is found, the function returns -1.

Finding by "ID" Number

long pgFindHyperlinkSourceByID (pg_ref pg, long
starting_position, long PG_FAR *end_position, long
id_nu�, pg_boolean scroll_to);

long pgFindHyperlinkTargetByID (pg_ref pg, long
starting_position, long PG_FAR *end_position, long
id_nu�, pg_boolean scroll_to);

These functions can be used to perform a "search" that
locates a specific link based on its value in id_num.
The link's id_num is usually set when you set the
original source or target link. The
pgFindHyperlinkTargetByID function searches for a
target link while pgFindHyperlinkSourceByID searches
for a source link.

Parameters

starting_position — The zero-indexed text position
to begin the search.
end_position Optional pointer to a long word. If
this is non-null, the long word gets initialised to
the text position follo��ng the link if found (the
*end_position value remains unchanged if a match is
not found).
id_num The value being searched for. The id_num
member in the link is compared to the id_num
parameter passed to this function. The link's
id_num is usually set when you set the original
source or target link.
scroll_to If TRUE, the document is scrolled to the
found location. If the link is found, the function
returns the text position where the link begins
(and if *end_offset is non-null it gets set to the
link's ending position). If no match is found, the
function returns -1.

20.8 Changing Existing Links

void pgChangeHyperlinkSource (pg_ref pg, long
position, select_pair_ptr selection, pg_char_ptr
URL, ht_callback callback, short display_style,
short draw��ode);
void pgChangeHyperlinkTarget (pg_ref pg, long
position, select_pair_ptr selection, pg_char_ptr
URL, ht_callback callback, short display_style,
short draw��ode);

These ��o functions are used to change the attributes
of an existing hypertext link;
pgChangeHyperlinkSource() changes a source link and
pgChangeHyperlinkTarget() changes a target link.

All parameters are completely identical to
pgSetHyperlinkTarget() and pgSetHyperlinkSource()
except for the additional position parameter — this
specifies where the link is located, i.e. its character
position in the text. (�here are several ways to find
the character position, not the least of which is
s��ply getting the selection range from the pg_ref,
assu��ng it is ��thin a link). See also the various
utility functions that return a text position of a
link.

For each parameter that is non-zero, that value is
changed to the value specified; other��se, the current
corresponding value remains unchanged.

For example, a non-null URL parameter changes the URL
string, while a null pointer leaves the existing string
unchanged.

20.9 Detecting Mouse Points

long pgPtInHyperlinkSource(pg_ref pg,
co_ordinate_ptr point);
long pgPtInHyperlinkTarget(pg_ref pg,
co_ordinate_ptr point);

These ��o functions are used to detect which link, if
any, contain a point. Use pgPtInHyperlinkSource for
detecting a point in a source link and
pgPtInHyperlinkTarget for detecting one in a target
link.

The point parameter is a point in screen coordinates
(�ot scrolled and �ot scaled).

FUNC��ON RESU��

If a link contains the point, its beginning text
position is returned. If no link contains a point,
point -1 is returned.

20.10 Changing Display State

void pgSetHyperlinkSourceState (pg_ref pg, long
position, short state, pg_boolean redra�);
void pgSetHyperlinkTargetState (pg_ref pg, long
position, short state, pg_boolean redra�);

These functions can be used to change the display state
of a link; pgSetHyperlinkTargetState changes the
display state of target links and
pgSetHyperlinkSourceState changes the display state of
source links.

Parameters

position — The text position of the link. Or, if
position is -1 the state is applied to all the
links of this type (i.e. all target links or all
source links). For example, to force all source
links to state 0 you could call
pgSetHyperlinkSourceState(pg, -1, 0, TRUE).
state — One of three states (0,1 or 2). The
state s��ply defines which of the three possible
styles to display the link.
redraw — If TRUE the link(s) redraw their new
state.

20.11 File I/O

There is no special function you need to call to read
or write HER��S Paige hypertext links. However, after
reading or ��porting a file ��th possible links you
must reinitialise your callback function pointers, if
any:

void pgSetHyperlinkCallback (pg_ref pg, ht_callback
source_callback, ht_callback target_callback);

This function walks through all existing links, sets
the callback function in the source links to
source_callback and the callback function in target
links to target_callback. Either function can be null,
in which case the default callback is used.

20.12 Removing Links

void pgDeleteHyperlinkSource (pg_ref pg, long
position, pg_boolean redra�);
void pgDeleteHyperlinkTarget (pg_ref pg, long
position, pg_boolean redra�);

These functions remove a source link or target link,
respectively.

Parameters

position — indicates which link to remove; this
must be a text position that exists somewhere
��thin the link.
redraw — if TRUE, the document is redrawn sho��ng
the change.

Note

Only the applied link and its displayed styles, etc.
are removed; the text itself as it exists in the
document is not changed. For example, if the word Book
existed in the document and had a target hypertext link
applied to it, removing the link s��ply means there is
no longer any associated link to this word yet the word
Book remains in the text, drawn in its normal (non-
link) style.

20.13 ��scellaneous

pgGetSourceURL()

pg_boolean pgGetSourceURL (pg_ref pg, long
position, pg_char_ptr URL, short max_size);
pg_boolean pgGe��argetURL (pg_ref pg, long position,
pg_char_ptr URL, short max_size);

These functions return the contents of the URL string
from a specific source or target link, respectively.

Parameters

position – The text position of the link.
URL — Pointer to a character buffer (to receive the
string).
max_size — The max��um number of characters that
can be received in the buffer, including the null
ter��nator of the cstring.

Function result

If there is no link found at the specified text
position, FALSE is returned (and no characters are
copied into URL). Other��se the string is set at URL
(and truncated, if necessary, if the string size >
max_size).

pgGetSourceID

long pgGetSourceID (pg_ref pg, long position);
long pgGe��argetID (pg_ref pg, long position);

These functions return the unique "ID" value in a
specific source or target link, respectively. position
The text position of the link.

Parameters

position — The zero-indexed text position of the
link.

Function result

The unique ID value, if any, belonging to the specified
link is returned.

NO��: a value of zero is returned if the link's id_num
member is zero or if there is not a link associated to
the specified position.

pgGetHyperlinkSourceInfo

pg_boolean pgGetHyperlinkSourceInfo (pg_ref pg,
long position, pg_boolean closest_one,
pg_hyperlink_ptr hyperlink);
pg_boolean pgGetHyperlinkTargetInfo (pg_ref pg, long
position, pg_boolean closest_one, pg_hyperlink_ptr
hyperlink);

These ��o functions return the actual hyperlink record
for a specific source or target link, respectively.

Parameters

position — The zero-indexed text position of the
link.
closest_one — If FALSE, the link must be found at
the specified position; other��se, the link is
found nearest to, or to the right of the specified
position.
hyperlink — Pointer to a pg_hypertext record. If
the link is found, the record is copied to this
structure.

Function result

FALSE is returned if no link is found at the specified
position (or no link is found be��een the position and
end of document when closest_one is TRUE).

pgInitDefaultSource

void pgInitDefaultSource (pg_ref pg,
pg_hyperlink_ptr link);

void pgInitDefaul��arget (pg_ref pg,
pg_hyperlink_ptr link);

These functions initialise a hypertext record to the
defaults. Usually you won't need to call this function.
It is mainly used for building hypertext links while
��porting files.

pgNewHyperlinkStyle

short pgNewHyperlinkStyle (pg_ref pg, pg_short_t
red, pg_short_t green, pg_short_t blue, long
stylebits, pg_boolean background);

This function creates a stylesheet that can be
subsequently passed to a function that sets a new
hypertext link.

Parameters

red, green, blue — define the R-G-B components of
a colour ("black" is the result of red, green and
blue all zeros). This colour is applied to the text
if the background parameter is FALSE; other��se,
the colour is applied to the text background.

stylebits — Defines optional style(s) to apply to
the text. This is a set of bits which can be a
combination of the follo��ng:

��nclude "pgHLevel.h"
#define X_PLAIN���XT
0x00000000
#define X_BOLD_B��
0x00000001

#define X_��ALIC_B��
0x00000002
#define X_UNDERLINE_B��
0x00000004
#define X_OU��INE_B��
0x00000008
#define X_SHADO��B��
0x00000010

#define X_CONDENSE_B��
0x00000020
#define X_EX��ND_B��
0x00000040
#define X_DBL_UNDERLINE_B��
0x00000080
#define X��ORD_UNDERLINE_B�� 0x00000100
#define X_DOT��D_UNDERLINE_B�� 0x00000200

#define X_HIDDEN���X��B��
0x00000400
#define X_��RIKEOU��B��
0x00000800
#define X_SUPERSCRIP��B��
0x00001000
#define X_SUBSCRIP��B��
0x00002000
#define X_ROTA��ON_B��
0x00004000

#define X_ALL_CAPS_B��
0x00008000
#define X_ALL_LO��R_B��
0x00010000
#define X_��ALL_CAPS_B��
0x00020000
#define X_OVERLINE_B��
0x00040000
#define X_BOXED_B��
0x00080000

#define X_RELA��VE_POIN��B�� 0x00100000
#define X_SUPER��POSE_B��
0x00200000
#define X_ALL_��YLES
0xFFFFFFFF

background — If TRUE, the colour is applied to the
text background; other��se, the colour is applied
to the text.

Function result

A new stylesheet ID is returned. If the exact
stylesheet already exists its ID is returned instead
(hence, you ��ll not create duplicate styles). This
stylesheet ID can be given to the function(s) that set
new hypertext links.

pgScrol��oLink

void pgScrol��oLink (pg_ref pg, long
text_position);

Function result

This function causes the document to scroll to the
specified, zero-indexed text position.

Note

The text position does not necessarily contain a link;
rather, this is a convenience function that forces the
document to scroll to the location specified.

21 TABLES AND BORDERS

21.1 General

A table is tab-del���ted text formatted as rows and
columns of "cells." The formatting information itself
is paragraph-based, while the text itself is internally
maintains each cell as tab or CR-del���ted text and
each row is del���ted by a CR.

At a very low level, table attributes are applied ��th
pgSetParInfo(). Higher level functions, described in
this document, provide methods to insert new tables and
format existing ones.

Table attributes are part of par_info.table represented
by the follo��ng record:

struct pg_table
{

long table_columns; ��
Number of columns (tables)

long table_column���dth; �� Default
column ��dth

long table_cell_height; �� ��N��UM
cell height

long border_info; ��
Borders

long border_spacing; �� Extra
spacing (for borders)

long border_shading; �� Border
background shading

long cell_borders; ��
Default borders around cells

long grid_borders; ��
Non-printable cell borders

long unique_id; ��
Unique table ID

long cell_h_extra; ��
Extra inset inside cells
};

Parameters

table_columns — Number of columns in the table. If
this is zero, the paragraph is not a table.
table_column���dth — The default ��dth for each
cell. If this is zero, cell ��dths are deter��ned
dyna��cally according to the ��dth of the
paragraph. For example, if the ��dth of the
paragraph after subtracting paragraph indents is 6
inches, a 6-column table ��ll render 1" cells. Note
that individual column ��dths can be altered after
a table is inserted.
table_cell_height — The default height for a ro�.
This is the ��n��um height for all rows. If zero,
the height is deter��ned by the height(s) of the
text ��thin the ro�.
border_info — Paragraph border information. If
table_columns is zero, border_info defines the
surrounding paragraph border lines (see section
19.1, Paragraph Borders).
border_spacing — The amount of extra spacing
be��een border line(s) and the text, in pixels.
This value is applied to paragraph borders.
border_shading — The background colour for the
paragraph or table. If this is zero, the normal
��ndow colour is used. Other��se, this is a 24-bit
representation of an RGB value (see "RGB Values"
���ra).
cell_borders — The default border line(s) around
each cell. This differs from border_info because it
applies only to cells ��thin a table.
grid_borders — The amount of extra spacing be��een
border line(s) and the text, in pixels. This value
is applied to paragraph borders. The default border
line(s) to display around cells if no other borders
are present. These cell borders are not drawn when
the document is printed; they apply only to table
cells.
unique_id — Used internally. The table_id is used
to maintain unique paragraph records; do �ot alter
this value.
cell_h_extra — Extra space, in pixels, be��een
cells.

21.3 RGB Values

Border and cell shading is represented by the follo��ng
bi���se settings in a long word:

0x00BBGGRR

The BB bits represent the blue component of the colour,
the GG bits represent the green component, and RR
represents the red component.

NO��: These bits are identical to the bits in a ��ndows
COLORREF.

21.4 Table Functions

NO��: These functions are defined in pgTable.h.

Inserting New

void pgInser��able (pg_ref pg, long position,
pg_table_ptr table, long ro��qty, short draw��ode);

Inserts a new table beginning at the text position
specified. The position parameter can be
CURREN��POS���ON.

Parameters

table is a pointer to a pg_table record defining
all the table attributes.
ro��qty indicates the desired number of rows. If
this is zero at least one row is inserted.
draw��ode causes the text to redraw if nonzero.
NO��: Since tables are a paragraph format, this
function may insert carriage return(s) before and
after the specified position so as more clearly to
del���t the format run.

Changing Columns and Cells

void pgSetColumn��dth (pg_ref pg, long position,
short column_nu�, short ��dth, short draw��ode);

Changes the ��dth of a specific column in a table.

Parameters

position indicates the text position of the table,
which can also be CURREN��POS���ON. This value can
be the position of any character ��thin the table
(i.e. it does not need to be the very beginning of
the table or a cell). If the specified position is
not part of a table, this function does nothing.
column_num The column defined by column_num gets
set to the value in ��dth; this is a zero-indexed
number.

-

void pgSetColumnBorders (pg_ref pg, long position,
short column_nu�, long border_info, short
draw��ode);

Changes the cell border line(s) of a specific column in
a table.

Parameters

position indicates the text position of the table,
which can also be CURREN��POS���ON. This value can
be the position of any character ��thin the table
(i.e. it does not need to be the very beginning of
the table or a cell). If the specified position is
not part of a table, this function does nothing.
column_num The column defined by column_num
changes its cell borders to border_info; this is a
zero-indexed number.

-

void pgSetColumnShading (pg_ref pg, long position,
short column_nu�, long shading, short draw��ode);

Changes the cell shading (background color) of a
specific column in a table.

Parameters

position indicates the text position of the table,
which can also be CURREN��POS���ON. This value can
be the position of any character ��thin the table
(i.e. it does not need to be the very beginning of
the table or a cell). If the specified position is
not part of a table, this function does nothing.
column_num The column defined by column_num
changes its background colour to shading; this is a
zero-indexed number.

-

void pgSetColumnAlignment (pg_ref pg, long
position, short column_nu�, short alignment, short
draw��ode);

Changes the cell text alignment ("justification") of a
specific column in a table.

Parameters

position indicates the text position of the table,
which can also be CURREN��POS���ON. This value can
be the position of any character ��thin the table
(i.e. it does not need to be the very beginning of
the table or a cell). If the specified position is
not part of a table, this function does nothing.
column_num — The column defined by column_num
changes its alignment to the value specified;
columns are zero-indexed. Alignment values are the
same as paragraph justification values
(justify_left, justify_center, justify_right,
justify_full).

-

pg_boolean pgIsTable (pg_ref pg, long position);

Returns TRUE if the specified position is ��thin any
part of a table.

Parameters

position can be CURREN��POS���ON.

-

pg_boolean pgPtInTable (pg_ref pg, co_ordinate_ptr
point, pg_boolean non_focus_only, select_pair_ptr
offsets);

Returns TRUE if the specified point is anywhere ��thin
a table.

Parameters

non_focus_only — value is ignored; pass FALSE for
compatibility.
offsets — if non-NULL and the point is ��thin a
table, offsets �� begin and offsets �� end get set
to the beginning and ending text position for the
whole table. (If the point was not ��thin any
table, offsets is unchanged).

-

memory_ref pgTableColumn��dths (pg_ref pg, long
position);

Returns a memory_ref containing the ��dth(s) for each
column. The memory size of the reference ��ll be equal
to the number of columns in the table.

Parameters

position indicates the text position of the table,
which can also be CURREN��POS���ON. This value can
be the position of any character ��thin the table
(i.e. it does not need to be the very beginning of
the table or a cell). If the specified position is
not part of a table, this function returns
M���NULL.

-

void pgCellOffsets (pg_ref pg, long position,
select_pair_ptr offsets);

Returns the text positions of the text contents of a
specific cell.

Parameters

position indicates the text position of the table,
which can also be CURREN��POS���ON. This value can
be the position of any character ��thin the table.
If the specified position is not part of a table,
this function does nothing; other��se, offsets ��
begin and offsets �� end ��ll return ��th the
beginning and ending of the contents of the cell
containing the original position. NO��: If the cell
contents are empty, offsets �� begin and offsets -
> end ��ll be equivalent.

-

void pgTableOffsets (pg_ref pg, long position,
select_pair_ptr offsets);

Returns the text positions for the beginning and ending
of the whole table.

Parameters

position indicates the text position of the table,
which can also be CURREN��POS���ON. This value can
be the position of any character ��thin the table.
If the specified position is not part of a table,
this function does nothing; other��se, offsets ��
begin and offsets �� end ��ll return ��th the
beginning and ending of the whole table.

Inserting / Deleting Rows and Columns

void pgInsertColumn (pg_ref pg, long position,
short column_nu�, tab_stop_ptr info, short
draw��ode);

Inserts a ne�, empty column into the table that
contains the text position specified.

Parameters

position can be CURREN��POS���ON; if it is not
contained in a table, this function does nothing.
column_num — The new column is inserted before
column_num (zero-indexed). To append a column to
the far right side of the table, column_num should
be equal to the current number of columns (see
pgNumColumns).
tab_stop.position — Column ��dth, in pixels. (Zero
= automatic ��dths).
tab_stop.type — Justification. Set to left_tab,
center_tab, etc. Default cell borders.
tab_stop.leader — Default cell borders.
tab_stop.ref_con — Default background shading (zero
for none).

=

void pgInsertRow (pg_ref pg, long position, long
ro��nu�, short draw��ode);

Inserts a ne�, empty row into the table that contains
the text position specified.

Parameters

position can be CURREN��POS���ON; if it is not
contained in a table, this function does nothing.
ro��num — The new row is inserted before ro��num
(zero-indexed). To append a row to the bottom end
of the table, ro��num should be equal to the
current number of rows (see pgNumColumns).

-

void pgDeleteColumn (pg_ref pg, long position,
short column_nu�, short draw��ode);

Removes a column (including its text contents).

Parameters

position — specifies a text position anywhere
��thin a table and can be CURREN��POS���ON. If the
position is not contained in a table, or if there
is only one column, this function does nothing.
column_num — specifies the column to delete and
must be be��een zero and pgNumColumns() - 1.

-

void pgDeleteRow (pg_ref pg, long position, long
ro��nu�, short draw��ode);

Removes a row (including its text contents).

PARAM���RS

position — specifies a text position anywhere
��thin a table and can be CURREN��POS���ON. If the
position is not contained in a table, or if there
is only one ro�, this function does nothing.
ro��num — specifies the row to delete and must be
be��een zero and pgNumRows() - 1.

��scellaneous

short pgNumColumns (pg_ref pg, long position);

Returns the number of columns in the table containing
position. If position is not contained in a table,
this function returns zero.

long pgNumRows (pg_ref pg, long position);

Returns the number of rows in the table containing
position. If position is not contained in a table,
this function returns zero.

NO��: the total number of rows is returned for the
whole table regardless of the position parameter. For
instance, a 10-row column would cause pgNumRows() to
return 10 whether the position is in the first ro�,
��ddle row or last ro�, etc.

Changing "Row" Information

There are no row-specific functions for tables since a
table "row" is really a paragraph. Hence, to change
attributes to a row you should use pgSetParInfo() and
make the desired changes.

For example, setting the justification value for a
table row (paragraph) ��ll cause each of the cells in
that row to assume the justification. Setting paragraph
borders or shading for the row ��ll affect all the
cells in that ro�, etc.

CAU��ON: Do �ot alter the tab settings or tab quantity
in a paragraph format applied to tables; the tab array
is used to record column attributes. Also, do �ot alter
the number of columns in the table record.

Getting Other Table Info

Table information is s��ply a member of par_info. To
get information about a table that is not covered in
one of the functions above, use pgGetParInfo().

22 FILE ��ANDARDS, INPU�, AND OUTPUT

NO��: If you ��ll only be saving files as HER��S Paige
native format or R�� and ��ll be including no
custo��sed file formatting, see chapters 17, HER��S
Paige ��port Extension, and 18, HER��S Paige Export
Extension. ��porting and exporting may be a s��pler
approach.

The HER��S Paige technology includes a file handling
system to help ��plement the follo��ng:

P�at�or�-��depe�de�t ���e tra�s�ers — a proposed
standard and function set that enables HER��S Paige
sof��are to read files saved by other C.P.O.S. as
well as save or re-save files to be understood in
reverse.
Upgrade/update ��depe�de�t ���e tra�s�ers — the
proposed standard guarantees upward and even
backwards compatibility for future enhancements to
HER��S Paige ��th regards to file transfer. For
example, every internal record structure, including
style records, can theoretically be altered and
enhanced, yet older files ��ll still be loaded
correctly and older sof��are ��ll even be able to
read the newer files (el���nating, of course, any
new feature set that was inherently saved).
App��cat�o�-��depe�de�t ���e tra�s�ers — diverse
applications, even on the same platforms, are able
to read file saved by other applications even if
unknown elements have been saved. Using HER��S
Paige's file transfer methods, application-specific
data embedded in the file is s��ply "skipped"
��thout any adverse consequences.
Subset o� �u�ct�o�s �or app-spec���c saves — HER��S
Paige makes it fairly easy to save and read your
own data structures along ��th the HER��S Paige
object data, all the while maintaining
compatibility ��th each concept listed above.
Preserves HER��S Pa�ge structures t�at �ave longs —
If you roll your own I/O, HER��S Paige structures
containing long words would get flipped around
(backwards). For example, if you just slam an
HER��S Paige struct to a file as a byte stream it
won't work on the other end. Fortunately HER��S
Paige's built-in I/O handler takes care of this
proble�. I strongly recommend you utilize the file

"key" system provided. If special/custom I/O is
required anywhere, take a look at the latest
release notes regarding files—there are now ways to
"roll your own" while still using HER��S Paige's
syste�.

22.1 Up and Running

Since the information in this chapter can be somewhat
complex in its entirety, the follo��ng example is
provided for you to be "up and running" ��th file I/O
by s��ply using the defaults.

/* DoSave saves the current pg_ref to a file. If
file_stuff is not NULL a new file is to be saved
(first-t��e saves and Save As) */
void DoSave (HWND hWnd, OPENFILENA�� far
*file_stuff)
{

int file_ref, far *f_ptr;
long position;
memory_ref file��ap;

if ((file_ref = _lcreat(file_stuff ��
lpstrFile, 0)) �� -1

{
file��ap = MemoryAlloc(�me��globals,

sizeof(int), 1, 0);
f_ptr = UseMemory(file��ap);
*f_ptr = file_ref;
UnUseMemory(file��ap);
position = 0;
pgSaveDoc(test_pg, &position, NULL,

0, NULL, file��ap, 0);

DisposeMemory(file��ap);
_lclose(file_ref);

}
}

Up and Running I/O Example (�ac)

/* In this file saving example, the ref_num
parameter is a file reference created and opened

using File OS functions. If there is a proble�, an
error result is returned. */

static OSErr save_file (pg_ref pg, short ref_nu�)
{

OSErr error;
file_ref filemap;
long file_position;
short *filemap_ptr;

filemap = MemoryAlloc(�me��globals,
sizeof(short), 1, 0);

filemap_ptr = UseMemory(filemap);
*filemap_ptr = ref_num;
UnuseMemory(filemap);
error;

}

file_position = 0;
error = pgSaveDoc(pg, \��ile_position, NULL, 0,
NULL, filemap, 0);
DisposeMemory(filemap);
return

NO��

The "save" code is quite small. If you aren't saving
anything special, writing a document is fairly
straightforward.

Reading a document (�ac)

/* In this file reading example, the ref_num
parameter is a file reference opened using File OS
functions. The app assumes it is an HER��S Paige
file (saved ��th the example above). If there is a
proble�, NULL is returned, other��se a new pg_ref is
returned. */
pg_ref read_file (short ref_nu�)
{

pg_ref pg;
OSErr error;
file_ref filemap;
long file_position;
short *filemap_ptr;

pg = pgNe��hell(�paige_rsrv); �� Creates
empty HER��S Paige object

filemap =
MemoryAlloc(�paige_rsrv.�e��globals, sizeof(short),
1, 0);

filemap_ptr = UseMemory(filemap);
*filemap_ptr= ref_num;
UnuseMemory(filemap);
file_position = 0;

�� NO��: You can also use HER��S Paige's
PG��RY, PG_CATCH here for exception handling

error = pgReadDoc(pg, \��ile_position, NULL,
0, NULL, filemap);

if (error �� noErr)
{

sho��error(error);
pgDispose(pg);
pg = NULL;

}
DisposeMemory(filemap);
return pg;

}

Reading an HER��S Paige file on ��ndows

/* DoFileOpen opens an HER��S Paige file which has
already been specified by user. */

void DoFileOpen (HWND hWnd, OPENFILENA�� far
*file_stuff)
{

int file_ref, far *f_ptr;
long position;
RECT vie��area;
memory_ref file��ap;

if ((file_ref = _lopen(file_stuff ��
lpstrFile, OF_READ)) �� -1)

{
file��ap = MemoryAlloc(�me��globals,

sizeof(int), 1, 0);
f_ptr = UseMemory(file��ap);
*f_ptr = file_ref;
UnuseMemory(file��ap);

position = 0;
pgReadDoc(test_pg, &position, NULL,

0, NULL, file��ap);
DisposeMemory(file��ap);
_lclose(file_ref);
GetClientRect(hWnd, ��ie��area);
InvalidateRect(hWnd, ��ie��area,

FALSE);
}

}

22.2 Saving a Document

If you want to "save" a pg_ref in the native, default
format, call the follo��ng:

(pg_error) pgSaveDoc (pg_ref pg, long PG_FAR
*file_position, pg_file_key_ptr keys, pg_short_t
nu��keys, file_io_proc write_proc, file_ref filemap,
long doc_element_info);

This function writes all the information ��thin pg to a
specified file; the first byte is written to
*file_position. When the function returns,
*file_position ��ll be updated to the next file
location (hence, *file_position ��nus the position
before the function is called = total byte size written
to the file).

If the ending file position of all HER��S Paige data
��ll not necessarily be the physical end-of-file, you
must ter��nate the file properly.

The keys parameter is an optional pointer to a list of
file keys known as file handlers. If this is a null
pointer, all components of pg are written.

If the keys parameter is non-null, then nu��keys must
indicate how many items are in the list pointed to by
keys, and pgSaveDoc only writes the components in the
list of keys.

The write_proc is a pointer to a function that should
do the physical I/O. However, this parameter can be a
null pointer, in which case the standard file transfer
function is used.

If write_proc is non-null, it must point to valid
file_io_proc function — see section 34.5, The
file_io_proc if you want to write your own io function.

The filemap parameter is a memory_ref allocation that
contains machine-specific information referencing the
physical file that is to be written to.

NO��: The filemap must be a file reference to an opened
file ��th write per��ssion. The way to accomplish this
is shown in the follo��ng function example (the f_ref
parameter is a file reference obtained from FSOpen, or
PBOpen, etc. for Mac��tos� or _lopen, etc. for
��ndows).

The doc_element_info parameter is used for identifying
multiple pg_ref "documents" written to the same file.
For a single document (or first in a series of pg_ref
writes), doc_element_info should be zero.

CAU��ON: If you intend to write any data follo��ng the
HER��S Paige data, or if the physical end-of-file ��ll
not exactly match the ending file position after
pgSaveDoc(), it is essential that you ter��nate the
HER��S Paige file by calling pgTer��nateFile(). Not
doing so ��ll result in unexplained crashes when the
file is reöpened.

CAU��ON: HER��S Paige does not set the physical end-of-
file. In other words, if you created a file 1 megabyte
in size and HER��S Paige wrote only 10 K of data, your
physical file size ��ll still be 1 megabyte. If
appropriate you must truncate your file once all the
data is saved.

How to create an HER��S Paige filemap

file_ref make_paige_filemap (short_f_ref)
{

file_ref ref_for_file;
�� ��ll be function result

short *f_ptr;
�� needs to init the "filemap"

�� creates an allocation, 2 bytes
ref_for_file =

MemoryAlloc(�paige_rsrv.�e��globals, sizeof (short),
1, 0);

f_ptr = UseMemory(ref_for_file); ��
gets pointer to allocation *f_ptr_ref

�� fill in file ref
UnuseMemory(ref_for_file);

�� unlock the application
return ref_for_file;

}

/* Once you have finished saving the file, you
dispose the filemap as follows: */
DisposeMemory(filemap);

NO��: For a complete understanding of memory
allocations, as shown in the above examples, see
chapter 25, The Allocation Manager.

If pgSaveDoc is successful, zero is returned (��plying
no I/O errors). If unsuccessful, the appropriate error
code ��ll be returned (see chapter 39, Error Codes).

Saving text only

The best/fastest way to save text only is to walk
through each block of text and write the text to a
file. (HER��S Paige maintains text as separate records,
each record containing a piece of the whole document).
The follo��ng is a brief example of how you can do
this:

paige_rec_ptr pg_rec;
pg_char_ptr text;
text_block_ptr block;
long nu��blocks, text_size;

pg_rec = UseMemory(pg); �� First get pointer
to "real" HER��S Paige record
nu��blocks = Ge��emorySize(pg_rec �� t_blocks); �� =
number of blocks
block = UseMemory(pg_rec �� t_blocks);
�� = first block

while (nu��blocks)
{

text_size = Ge��emorySize(block �� text);
text = UseMemory(block �� text);

/* At this point, text_size is number of
text bytes and text is pointer to text; hence, you
can save *text to a file for text_size bytes. */

UnuseMemory(block �� text);
��block;
--nu��blocks;

}
UnuseMemory(pg_rec �� t_blocks);
UnuseMemory(pg);

Ter��nating the File

If the ending file position of all HER��S Paige data
��ll not be the physical end-of-file, you must
ter��nate the file properly using pgTer��nateFile as
shown belo�.

For example, if you were to call pgSaveDoc, then set
the physical end-of-file to the ending file position,
your file save is complete (you do not need to
ter��nate the file in any other way). If, however, you
were to call pgSaveDoc but you then wanted to write
additional data of your own beyond that point, you
would first have to call the follo��ng function:

(pg_error) pgTer��nateFile (pg_ref pg, long PG_FAR
*file_position, file_io_proc write_proc, file_ref
filemap);

This function writes a file key that specifies the
logical end-of-file for the HER��S Paige document.
Later, when the file is read ��th pgReadDoc, HER��S
Paige ��ll recognise this key as the logical end-of-
file and discontinue reading any data beyond that
position.

Upon entry, pg, file_position, and write_proc should
all be the same parameters that were given to
pgSaveDoc.

NO��S:

You do �ot need to call this function if the end of
the HER��S Paige document and physical end-of-file
is identical (but it does not hurt to do so).

The term "logical end of file" ��plies the end of
the very last piece of data that can be read
(later) by pgReadDoc. That includes all data
written by pgSaveDoc and/or pgWriteKeyData.
When and if pgReadDoc encounters the logical end-
of-file, the file offset returned by pgReadDoc ��ll
be positioned at the first byte after the end-of-
file (�hich would have been the first byte written
by your application if you wrote nonHER��S Paige
data after this position).

22.3 Reading a Document

To read a document previously saved ��th pgSaveDoc,
call the follo��ng:

(pg_error) pgReadDoc (pg_ref pg, long PG_FAR
*file_position, pg_file_key_ptr keys, pg_short_t
nu��keys, file_io_proc read_proc, file_ref filemap);

In this function, pg must be a valid HER��S Paige
object reference for which all data that is read can be
placed; pg, however, can be completely empty. If it
does contain data (text, styles, etc.), those items get
replaced ��th data that is read from the file; items
that are not processed from the file (i.e., data
components not recognized or components that don't even
exist in the file) ��ll leave that component in pg
unchanged.

NO��: It may be helpful to know that a function exists
to create a completely "empty" pg_ref for purposes of
pgReadDoc — see section 34.15, A Quick and Easy ��pty
HER��S Paige Object.

When pgReadDoc is called, what occurs is as follows: a
data component is read beginning at the specified file
offset; the data component a��ays includes a "header"
that includes the data key as well as the data size.
The file handler (pg_handler) is searched for that
contains the data key and, if found, the file handler
function is called to process the data. If a pg_handler
is not found, a special "exception handler" is called
which ��ll be described later in this section, and then
the data is skipped.

Each data component is handled in this way, one element
at a t��e, until the end-of-file is reached.

NO��: The "end-of-file" is not necessarily the physical
end-of-file; rather, it is deter��ned by the file
position given to pgTer��nateFile().

The file_position parameter must point to the first
file offset to read, in bytes. The offset is zero-
indexed, relative to the beginning of the file, and
must be the same position given to pgSaveDoc() when the
file was written.

If keys is a null pointer, pgReadDoc ��ll try to
process every data element it reads. If keys is non-
null, it must be a pointer to a list of nu��key keys;
if such a list is given, pgReadDoc ��ll only consider
processing the keys that are in the list.

The read_proc is a pointer to a function that should do
the physical I/O. However, this parameter can be a null
pointer, in which case the standard file transfer
function is used.

If read_proc is non-null, it must point to valid
file_io_proc function — see section 34.5, The
file_io_proc if you want to write your own I/O
function.

The filemap parameter is a memory_ref allocation that
contains a file reference, native to the runt��e
platfor�.

NO��: The filemap must be a file reference to an opened
file ��th at least read per��ssion. The way to
accomplish this is shown in the example above for
pgSaveDoc.

If pgReadDoc is successful, zero is returned (��plying
no I/O errors). If unsuccessful, the appropriate error
code ��ll be returned (see chapter 39, Error Codes).

22.4 Verifying an HER��S Paige-
formatted File

You can verify if a file is a true HER��S Paige file or
not by calling the follo��ng:

(pg_error) pgVerifyFile (file_ref filemap,
file_io_proc io_proc, long position);

Use this function to "test" any file to find out if it
is truly an HER��S Paige file. Upon entry, filemap and
io_proc must be the same parameters you would pass to
pgReadDoc().

The position parameter specifies the file position, in
bytes.

FUNC��ON RESU��: If the function returns zero, the file
is a valid HER��S Paige file. Other��se the appropriate
error code is returned (usually BAD��YPE_ERR).

22.5 Do you need the remaining info?

The rest of this chapter explains the details of
extending the HER��S Paige saving mechanisms to your
own applications. If you are saving only the contents
of a pg_ref, you do not need to read anything else in
this chapter. If you are saving "custom" information,
read on.

22.6 Saving Your Own Data Format

NO��: There is nothing preventing you from writing and
reading whatever you want before and after HER��S Paige
transfers the contents of a pg_ref. Calling
pgSaveDoc() s��ply serialises a stream of objects
beginning at the file position you have specified, and
there is nothing to prevent you from writing other data
after that location. If you consider the composite
stream of HER��S Paige data as one single "record" in a
file, the concept of integrating your own data may be
s��plified.

On more than one occasion, an HER��S Paige user has
asked how some particular data format can be forced
using the HER��S Paige file mechanis�, or how text can
be saved as one continuous block of text, etc.

The answer is possibly non-intuitive, yet fairly s��ple
once it is grasped:

1. If you have no reason to make HER��S Paige
automatically read your custom data, just write the
data before or after the HER��S Paige data and read
it back the same way (see note supra).

2. If you want HER��S Paige to save the data for you
and notify you when it reads it back, use
pgWriteKeyData to save the structure, and then use
a custom handler to read the structure (see example
���ra).

If you want HER��S Paige to write your data and notify
you when it is read, the easiest way to go is to write
the data ��th pgWriteKeyData and retrieve it ��th a
read handler. If this method seems appropriate to your
situation, the follo��ng sample code illustrates how
this can be done:

void SaveMyData (some_arbitrary_struct *myData,
long myDataSize, pg_file_key myFileKey)
{

/* First, save pg_refusing all the defaults. The
"myFileRef" is a memory_ref containing the file
reference specific to the machine. For Macintosh,
the memory_ref contains the file refNu�. For
��ndows, the memory_ref contains the integer result
from OpenFile (or _lopen, etc.). */

long position;
position = 0; �� We save file starting at first
byte (but don't have to)
pgSaveDoc(pg, \&position, NULL, 0, NULL, myFileRef,
0);
pgWriteKeyData(pg, myFileKey, (void *)�yData,
myDataSize, myRefCon, NULL, &position, myFileRef);
}

Notes:

1. myRefCon represents any value you want to save as a
reference. You ��ll get this value handed back to
you in the read handler (belo�).

2. MyFileKey can be any number �� CU��O��HANDLER_KEY.
This value is used to identify the data item when
the file is read later.

3. You can call a s���lar function as above multiple
t��es. When the file is read, your read handler
��ll get called for each occurrence of the data as
it is read.

The Read Handler

To read the data structure(s) back, you first install a
read handler:

pgSetHandler(�paige_globals, myFileKey,
myReadHandler, NULL, NULL, NULL, NULL);

The value for myFileKey should be the same as the value
used in the above example for writing the data.

Your read handler should look like this:

PG_PASCAL (pg_boolean) myReadHandler (paige_rec_ptr
pg, pg_file_key the_key, memory_ref key_data, long
PG_FAR *element_info, void PG_FAR *aux_data, long
PG_FAR *unpacked_size)
{

/* ��� */
}

HER��S Paige calls this function each t��e it reads
data from the file that was saved as the_key
(previously written as myFileKey in the example
contained in the section preceding). You can ignore
a��ost all of the parameters; the only ��o you probably
care about are key_data (�hich holds the data that has
been read from the file) and element_info (�hich points
to "myRefCon" saved earlier).

Retrieving the data in the read handler: the data, as
originally written to the file, ��ll be contained in
key_data. To get a pointer to the data, s��ply do:

ptr = UseMemory(key_data);

NO��: be sure to do UnuseMemory after accessing the
data in ptr. To learn how large the data is, do�—

data_size = Ge��emorySize(key_data);

The Hybrid

Somet��es you need to save file data in some specific
format, bypassing the HER��S Paige file I/O system
altogether, yet you want HER��S Paige to save most of
the pg_ref data items.

To do so, perform the follo��ng logic:

To save

1. Call pgSaveDoc in the normal way (if you need to
save regular pg_ref items).

2. Call pgTer��nateFile (�hich tells HER��S Paige
there ��ll be no more HER��S Paige-based data).

3. At this point the file position ��ll be known (i.e.
the next byte offset to write some additional
data). Write this data in any way you choose.

To retrieve the data

1. Call pgReadDoc (if you used pgSaveDpc to save).
2. The file offset ��ll return to you positioned on

the first byte you originally wrote. Read the data
in whatever method is appropriate.

NO��: You can perform the "reverse," if necessary, by
calling pgSaveDoc a�ter you write your own data. This
��ll still work so long as you provide the correct file
position to pgSaveDoc to begin saving that same file
position for pgReadDoc to begin reading.

HER��S Paige file mechanism provides some opt�o�a�
utilities to "compress" a series of numbers so your
data transfer is smaller. You can certainly use your
own instead of these.

These functions make data portable be��een platforms.
This is because they resolve the saving and retrieving
certain numbers be��een Macintosh and ��ndows which
save those numbers backwards from each other. These
function make those numbers portable.

By "series of numbers" is meant an array of longs or
shorts, or consecutive fields in a record structure,
etc.

For example, suppose you need to save a large record
structure that consists mostly of zeros. Using the
"pack" and "unpack" methods described below you can
conserve a great deal of space.

��nclude "pgFiles.h"
(void) pgSetupPacker (pack��alk_ptr walker,
memory_ref ref, long first_offset);

pgSetupPacker sets up a special record to begin packing
or unpacking numbers. For "packing" numbers, you begin
��th a zero-size pg_ref and the packing functions
append data to it; for unpacking, you begin ��th a
memory_ref that already has packed data (or contains
packed data read from a file) and retrieve the data
��th the unpacking functions (see belo�).

The walker parameter must be a pointer to a pack��alk
record (defined in pgFiles.h). If you are
packing/unpacking from a read or write handler, the ref
parameter should be the key_data memory_ref given to
you when a read or write handler is called. Or, if you
are using the pack/unpack functions outside of a read
or write handler, ref must be a valid memory_ref ��th
a record size of one byte and a memory size of zero for
packing, or a valid memory_ref containing previously
packed data for unpacking.

The first_offset parameter should be zero.

Once the pack��alk record is set up, you can use the
functions given belo�.

NO��: If packing numbers, once you are through, call
pgFinishPack.

Packing

��nclude "pgFiles.h"
(void) pgPackNum (pack��alk_ptr out_data, short
code, long value);

Adds a long or short numeric value to the packed data.
The out_data parameter must point to an initialised
pack��alk record previously set up ��th pgSetupPacker.

The code parameter should be short_data if packing an
integer or long_data for packing a long. The value
parameter is the numeric value to pack.

��nclude "pgFiles.h"
(void) pgPackNumbers (pack��alk_ptr out_data, void
PG_FAR *ptr, short qty, short data_code);

Identical to pgPackNum except an array of numbers are
packed. The ptr parameter must point to the first
number in the array, the qty parameter indicates the
number of elements in the array, and data_code must be
short_data if the elements are integers or long_data
if the elements are longs. All elements must be the
same type (all must be either shorts or longs, not a
��xture).

��nclude "pgFiles.h"
(�emory_ref) pgFinishPack (pack��alk_ptr walker);

Completes the packing ��thin walker (by opt���sing the
compression and ter��nating the internal packed data
structure).

If you have packed anything at all, you �ust call this
function.

CAU��ON: Do �ot call pgFinishPack if you have not
actually packed any data (i.e., the original memory_ref
is still zero size).

The function returns the same memory_ref you originally
gave pgSetupPacker.

Unpacking

��nclude "pgFiles.h"
(long) pgUnpackNum (pack��alk_ptr in_data);

Returns a number that was previously packed. The
in_data parameter must be a pointer to an initialised
pack��alk record (using pgSetupPacker).

NO��: Numbers must be unpacked in the same order as
they were packed. However, pgUnpackNum ��ll s��ply
return zero(s) if you ask for more numbers than were
packed.

��nclude "pgFiles.h"
(void) pgUnpackNumbers (pack��alk_ptr out_data, void
PG_FAR *ptr, short qty, short data_code);

Identical to pgUnpackNum except an array of numbers are
unpacked. The ptr parameter must point to the first
number in the array to receive the numbers, the qty
parameter indicates the number of elements in the
array, and data_code must be short_data if the
elements are integers or long_data if the elements are
longs. All elements must be the same type (all must be
either shorts or longs, not a ��xture) and they must
be the same type(s) that were originally packed. If
more numbers are asked for than were packed, this
function fills the extra array elements ��th zeros.

NO��: You do �ot call pgFinishPack for unpacking—that
function is only used to ter��nate data after using the
"pack" functions.

Additional Pack/Unpack Utilities

��nclude "pgFiles.h"
(void) pgPackBytes (pack��alk_ptr out_data,
pg_char_ptr the_bytes, long length);

Appends the_bytes data of size length to the packed
data in out_data.

NO��: The data is not actually "compressed" but is
s��ply included in the data stream and can be retrieved
��th pgPackBytes or pgUnpackPtrBytes belo�.

It is OK to ��x pgPackBytes ��th pgPackNum or
pgPackNumbers as long as you retrieve the data in the
same order that you packed it.

��nclude "pgFiles.h"
(void) pgUnpackPtrBytes (pack��alk_ptr in_data,
pg_char_ptr out_ptr);

Unpacks data previously packed ��th pgPackBytes. The
bytes are written to *out_ptr in the same order they
were originally packed. It is your responsibility to
make sure out_ptr can contain the number of bytes about
to be unpacked. (If you aren't sure about the size of
the unpacked data, or if the data ��ght be arbitrarily
huge, it ��ght be better to use pgUnpackBytes belo�).

��nclude "pgFiles.h"
(void) pgUnpackBytes (pack��alk_ptr in_data,
memory_ref out_data);

Identical to pgUnpackPtrBytes except the unpack data is
placed in out_data memory_ref. The memory_ref ��ll be
sized to hold the total number of unpacked bytes. The
advantage of using this method versus pgUnpackPtrBytes
is that you do not need to know how large the data is.

��nclude "pgFiles.h"
(long) pgGetUnpackedSize (pack��alk_ptr walker);

Returns the size, in bytes, of the next data in walker.
This function works for all types of data that have
been packed, both numbers and bytes.

Rectangle

��nclude "pgFiles.h"
(void) pgPackRect (pack��alk_ptr walker,
rectangle_ptr r);
(void) pgUnpackRect (pack��alk_ptr walker,
rectangle_ptr r);

Packs/unpacks a rectangle r.

Co_ordinate

��nclude "pgFiles.h"
(void) pgPackCoOrdinate (pack��alk_ptr walker,
co_ordinate_ptr point);
(void) pgUnpackCoOrdinate (pack��alk_ptr walker,
co_ordinate_ptr point);

Packs/unpacks a co_ordinate.

Colour

��nclude "pgFiles.h"
(void) pgPackColor (pack��alk_ptr walker,
color_value PG_FAR *color);
(void) pgUnpackColor (pack��alk_ptr walker,
color_value PG_FAR *color);

Packs/unpacks a color_value colour into the packed
data.

Shape

��nclude "pgFiles.h"
(long) pgPackShape (pack��alk_ptr walker, shape_ref
the_shape);
(void) pgUnpackShape (pack��alk_ptr walker,
shape_ref the_shape);

Packs/unpacks a shape the_shape.

Select pair

��nclude "pgFiles.h"
(void) pgPackSelectPair (pack��alk_ptr walker,
select_pair_ptr pair);
(void) pgUnpackSelectPair (pack��alk_ptr walker,
select_pair_ptr pair);

Packs/unpacks a select_pair pair.

23 HUGE FILE PAGING

"File paging" is a method in which large files are not
read into memory all at once; rather, only the
portion(s) that are needed to display are read
dyna��cally as the user scrolls or "pages" through the
document.

23.1 Paging HER��S Paige Files

Any file that has been saved ��th pgSaveDoc() (or ��th
the custom control message PG_SAVEDOC) can be opened in
"paging" mode by calling a different function instead
of pgReadDoc():

pg_error pgCacheReadDoc (pg_ref pg, long PG_FAR
*file_position, const pg_file_key_ptr keys,
pg_short_t nu��keys, file_io_proc read_proc,
file_ref filemap);

This function is 100% identical to pgReadDoc() except
that the document is set to disc-paging mode. This
means that the text portion of the document is not
loaded into memory all at once; rather, only the
portions that are needed are loaded dyna��cally.

The parameter values should be completely identical to
what you would pass to pgReadDoc(). However, the
physical disc file must remain open for disc paging to
be successful, and closed only after the pg_ref is
finally disposed.

Not only should the file remain open, but the filemap
parameter must also remain valid. For example, if
filemap is a memory_ref (�hich it ��ll be for the
standard "open" function), that memory_ref and its
content must remain intact until the pg_ref has been
disposed.

If pgCacheReadDoc() returns ��thout error, all portions
of the document except for its text ��ll have been
loaded into memory; the text portions ��ll be loaded as
needed during the course of the user's session ��th
this document.

S���larly, for tight memory situations, HER��S Paige
��ll unload text portions as required (if they have not
been altered) to make room for other allocations. This
unloading process occurs transparently even if you have
not enabled virtual memory.

NO��: Calling pgDispose() does not close the file; your
application must close the file after the pg_ref has
been destroyed. If you need to obtain the original file
reference, see "pgGetCacheFileRef()". If you are using
your own file_io_proc, that file_io_proc must be
available at all t��es until the document is disposed.

23.2 HER��S Paige ��port Extension

If you are opening file(s) ��th the HER��S Paige ��port
extension, instead of calling pgReadDoc(), file paging
is enabled by setting the ��POR��CACHE_FLAG bit in the
��port_flags parameter as explained in section 17.2,
��porting Files (from C��).

Text file paging

You can set a raw ASCII text file for file paging by
using the HER��S Paige ��port extension for ASCII text
files. To enable file paging, set the ��POR��CACHE_FLAG
bit in the ��port_flags parameter.

Paging text files causes only the text that is required
for displaying to be loaded into memory.

NO��: You must keep the text file open until the
document is disposed.

23.3 Custom Control

Use the message PG_CACHEREADDOC instead of PG_READDOC
to enable disk paging.

NO��: wParam and lParam are identical ��th both
messages. The file must remain open, however, until the
control ��ndow is closed.

23.4 Getting the File Reference

file_ref pgGetCacheFileRef (pg_ref pg);

This function returns the file, if any, that was given
to pgCacheReadDoc(). Or, if you enabled file paging
��th the HER��S Paige ��port extension, the value
returned from this function ��ll be the original file
reference given to the ��port class.

The usual reason for calling this function is to obtain
the file reference before disposing the pg_ref so the
file can be closed.

23.5 File Paging Save

pg_error pgCacheSaveDoc (pg_ref pg, long PG_FAR
*file_position, const pg_file_key_ptr keys,
pg_short_t nu��keys, file_io_proc write_proc,
file_ref filemap, long doc_element_info);

This function is identical to pgCacheReadDoc() except
it should be called to save a file that is currently
enabled for file paging (i.e., the document was
previously opened ��th pgCacheReadDoc() or ��ported
��th the ��POR��CACHE_FLAG bit).

Calling pgCacheSaveDoc() creates an identical file to
pgSaveDoc() and accepts the same parameters to its
function; the difference, however, is how it handles
certain situations that ��ght other��se fail (for
example, saving to the same file that is currently open
for file paging).

It is safe to use pgCacheSaveDoc() even if the document
is not enabled for file paging.

If this function is successful, the filemap parameter
becomes the new file paging reference (the same as if
you had reopened the file ��th pgCacheReadDoc()). It is
therefore ��portant that you close the previous file
(if it was different) and that you do not close the new
file just saved.

NO��: Opening a file ��th pgCacheReadDoc() then re-
saving to that same file ��th pgCacheSaveDoc() ��ll

only work correctly if the filemap parameter is exactly
the same file_ref for both opening and saving.

23.6 Writing Additional Data

If you need to write additional data to an HER��S Paige
file it is safe to do so after pgCacheSaveDoc()
returns; or, if you are certain that the file being
written is a different file than the original file
given to pgCacheReadDoc(), it is safe to write data
before and/or after pgCacheSaveDoc().

You may also call extra functions such as
pgSaveAll��bedRefs() and pgTer��nateFile() in the same
way they are used ��th pgSaveDoc().

23.7 HER��S Paige Export Extension

If you are saving file(s) ��th the HER��S Paige export
extension, you can cause the same effect as
pgCacheSaveDoc() by setting the EXPOR��CACHE_FLAG bit
in the export_flags parameter—see chapter 18, HER��S
Paige Export Extension.

24 ��SCELLANEOUS U��L���ES

24.1 Require recalc

(void) pgInvalSelect (pg_ref pg, long select_fro�,
long select_to);

The text from select_from to select_to in pg is
��va��dated, i.e., marked to require recalculation, new
word wrap, etc.

Both parameters are zero-indexed byte offsets. No
actual calculation is performed until pgPaginateNow is
called (see section 24.3, Paginate Now) or the text (or
highlighting) is drawn.

24.2 Highlight Region

pg_boolean pgGetHiliteRgn (pg_ref pg,
select_pair_ptr range, memory_ref select_list,
shape_ref rgn);

This function sets rgn to the "highlight" shape for the
specified range of text.

The rgn parameter must be a valid shape_ref (�hich you
create); when the function returns, that shape ��ll
contain the appropriate highlight region.

The text offsets that are used to compute the region
are deter��ned as follows: if range is not a NULL
pointer, that selection pair is used; if range is NULL
but select_list is not M���NULL, then select_list is
used as a list of selection pairs (see belo�). If both
are NULL, the current selection range in pg is used.

The select_list parameter, if not M���NULL, must be a
valid memory_ref containing a list of select_pair
records. Usually, a selection list of this type is used
for discontinuous selections (see "Discontinuous
Selections" for information about pgGetSelectionList
and pgSetSelectionList).

FUNC��ON RESU��: TRUE is returned if the resulting
highlight region is not empty.

24.3 Paginate Now

(void) pgPaginateNow (pg_ref pg, long paginate_to,
short use_best_guess);

The HER��S Paige object is forcefully "paginated"
(lines computed) from the start of the document up to
the text offset paginate_to.

If use_best_guess is TRUE, HER��S Paige does not
calculate every single line, rather it makes a guess as
to the document's height.

If the document is already calculated, this function
does nothing.

NO��S:

1. On a large document, full pagination from top to
bottom can take several seconds; be that as it may,
it is the only guara�teed method to produce 100%
accuracy on text height or line positions.

2. HER��S Paige automatically calls this function for
you in most cases that require it.

24.4 Style Info

(pg_boolean) pgFindStyleInfo (pg_ref pg, long
PG_FAR *begin_position, long PG_FAR *end_position,
style_info_ptr match_style, style_info_ptr mask,
style_info_ptr AND��ask);

FUNC��ON RESU��: This function returns TRUE if a
specific style—or portions thereof—can be found in pg.

Upon entry, begin_position must point to a text offset
(i.e., a zero-indexed byte offset); when this function
returns and a style is found, *begin_position ��ll get
set to the offset where the found style begins and

*end_position to the offset where that style ends in
the text.

Styles are searched for by comparing the fields in
match_style to all the style_info records in pg as
follows: Only the fields corresponding to the non-zero
fields in mask are compared; before the comparison, the
corresponding value in AND��ask is ANDed temporarily
��th the value in the style_info record in question. If
all fields match in this way, the function returns TRUE
and sets begin_position and end_position accordingly.

If match_style is a null pointer, the function ��ll
a��ays return TRUE (it ��ll s��ply advance to the next
style). If mask is null, then all fields are compared
(such that the whole style must match to be TRUE). If
AND��ask is null, no ANDing is performed (and the
whole field is compared).

24.5 Exa��ne Text

pg_char_ptr pgExa��neText (pg_ref pg, long offset,
text_ref *text, long PG_FAR *length);

This function provides a way for you to exa��ne text
directly in an HER��S Paige object.

The offset parameter should be set to the absolute,
zero-indexed byte offset you ��sh to return. The text
parameter is a pointer to a text_ref variable which
��ll get set to a memory_ref by HER��S Paige before the
function returns. The length parameter must point to a
long, which also gets set by HER��S Paige.

FUNC��ON RESU��: A pointer is returned that points to
the first character of offset; *text is set to the
memory_ref for that text, which you must "unuse" after
you are through looking at the text (see belo�);
*length ��ll get set to the text length of the pointer,
which ��ll be the number of characters to the end of
the text block from which the text was taken (it won't
necessarily be the remaining length of all text in pg).

�� This shows getting the text at offset 123:
text_ref ref_for_text;
long_t length;

pg_char_ptr the_text;
the_text = pgExa��neText(pg, 123, &ref_for_text,
��_length);

�� ��� do whatever ��th the text, then:
UnuseMemory(ref_for_text);
�� �� other��se it stays locked! */

��CH NO��: Exa��ning some text

I'd like to know how to fetch the text from an
HER��S Paige document. I've read the manual and
still don't get it. I've created an HER��S
Paige document in a dialog so I can allow the
user to enter more than 255 characters.
Inserting text is no proble�. How do I get it
back out. A hint would be fine, a snippet of
code would be marvelous.

Although some of the solutions below ��ll work, the
method above described is more for high-speed direct
text access used for find/replace features, or spell
checking, etc.

In your case, however, I think walking through the text
blocks using pgExa��neText ��ght be unnecessarily
complex. Just use the follo��ng function:

text ref pgCopyText (pg_ref pg, select_pair_ptr
selection, short data_type;
/* See section "Copying Text Only" ���� on page 5-
109��� */

Given a specific selection of text in selection, this
returns a memory_ref that has the text you want. Very
s��ple. The data_type parameter should be one of the
follo��ng:

enum
{

all_data, ��
Return all data

all_text_chars, �� All text
that is writing script

all_roman, ��

All Roman ASCII chars
all_visible_data, �� Return

all visible data

all_visible_text_chars, �� All visible text
that is writing script

all_visible_roman �� All
visible Roman ASCII chars
};

The one you want is probably all_data or
all_text_chars.

If selection is NULL, the text returned ��ll be the
currently selected (highlighted) text; other��se, it
returns the text ��thin the specified selection (�hich
is probably what you want). This parameter should
therefore point to a select_pair record which is
defined as:

typedef struct select_pair
{
long begin; �� beginning of selection
long end; �� end of selection
};

To copy all text, begin should be zero and end should
be pgTextSize(pg).

The function returns a text_ref which is a memory_ref.
To get the text inside, do this:

Ptr text;
text = UseMemory(ref); /* �� where "ref" is function
result */

Then when you're finished looking at the text, do:

UnuseMemory(ref);

Finally, to dispose the text_ref call
DisposeMemory(ref).

This should be the way to go.

��CH NO��: Exa��ning text across the text
blocks

I am using pgExa��neText to access the text in
the HER��S Paige object I am searching. This
creates some problems because of the HER��S
Paige text blocks.

It depends on what you are searching for. Under normal
conditions, HER��S Paige a��ays splits a block on a CR
(carriage return) character (including the CR as its
last character, which means it can't ever break in the
��ddle of a line or word. And by "normal" conditions I
mean a document composed of reasonably sized paragraphs
where CRs exist at, say, every few hundred characters.
If you have some mongo paragraph that goes for pages,
the block gets split somewhere else ��th no other
choice. Even then, however, it tries to break it at a
word boundary and not in the ��ddle.

Hence you ��ght ��prove your searching by checking for
CR at the end of the block—it would only be when you're
searching on something that must cross a CR boundary
would it be necessary to cross the block.

In any event, it also depends on how you are actually
doing the search/compare. If you're using some black-
box code that requires a continuous text pointer, then
I see why you have a proble�. But if you rolled your
own, why can't you just increment to the next buffer
��th a new pgExa��neText?

A second related issue has to do ��th non-case
sensitive searches. To handle this I convert
the find string & all the text in the HER��S
Paige target to upper case (CtoUpper function)
and search in the regular way.

Again, I am wondering if you're doing your own compare-
character function versus calling someone's "compare"
black box. I've written character compare searches many
t��es, and to do case insensitive compares I s��ply
convert the character from each pointer to upper case
(in a separate variable) before comparing. Of course
you can do all that at once by copying all of it to a
buffer. I'm not sure which way is fastest.

… it appears that I need to allocate memory,
move the text into it and work ��th the copy.

It looks like MemoryDuplicate may be the way
to go.

Maybe, but what would be a lot faster is to allocate a
worst-case memory_ref, then use MemoryCopy. The reason
this would be a lot faster is you wouldn't need to keep
creating a memory_ref, rather you would just slam the
text straight into your allocation for each block. And,
the way HER��S Paige Allocation Manager works is that
a��ost no SetHandleSize would ever occur.

If you want to concatenate ��o text blocks together in
your memory_ref, you should first do MemoryCopy for
the first one, then for the second you do:

ptr = AppendMemory(�emory_ref, size_of_2nd_block,
FALSE);
BlockMove(text_ptr_of_send_block, ptr,
size_of_2nd_block);
UnuseMemory(�emory_ref);

For additional speed, if you elect to do the MemoryCopy
method, you ��ght consider bypassing pgExa��neText and
going directly to the block. You can do this using the
same functions HER��S Paige uses (the offset parameter
is the desired text offset):

paige_rec_ptr pg rec;
text_block_ptr block;
pg_rec = UseMemory(pg); �� pg = your pg_ref
block = pgFindTextBlock(pg_rec, offset, NULL,
FALSE);
text_ptr = UseMemory(block �� text);

… then, when through ��th block:

UnuseMemory(block �� text);
UnuseMemory(pg_rec �� t_blocks);
UnuseMemory(pg);

You can also get total number of blocks as:

nu��blocks = Ge��emorySize(pg_rec �� t_blocks);

NO��: you need to include pgText.h which contains the
lo��evel function prototype for pgFindTextBlock.

��CH NO��: Things to know about text blocks

Text blocks are an ��portant part of HER��S
Paige. We have found that only by using text
blocks can you get acceptable performance. In
fact, these text blocks are around 2 K in size
by default. If text was not put into blocks you
would get performance like TextEdit when text
exceeds small blocks. As you kno�, it comes to
a cra�� when the text is larger than about 5 K.

There are some ��portant things you may want to know
about text blocks however.

First of all, you should not look at the text using
HandleToMemory, etc. HER��S Paige provides functions
for getting a locked pointer to a chunk of text.

Second, you should not change the text by inserting
directly into a block. You can exchange a character
while in pgExa��neText. But if you try and do any
direct insertions, the block ��ll be messed up, and all
the subsequent styles ��ll be wrong.

Third, HER��S Paige does its very best to break text
blocks at a carriage return. If there is a carriage
return ��thin the block, HER��S Paige breaks there. If
not, it s��ply breaks it at a convenient place.
Therefore, you cannot be assured what the last
character is. You must use the length given you by
pgExa��neText. There is no character that you can check
to know where the end of the text block is. HER��S
Paige cannot assume you ��ll want to use any particular
character. No matter what character we ��ght pick,
someone ��ll be using it in their data.

To access all the text, you s��ply walk through the
blocks using pgExa��neText.

24.6 Information About a Particular
Character

(long) pgCharType (pg_ref pg, long offset, long
mask_bits);
(pg_short_t) pgCharByte (pg_ref pg, long offset,
pg_char_ptr char_bytes);

The ��o functions above ��ll return information about a
character.

FUNC��ON RESU��: The function result of pgCharType ��ll
be a set of bits describing specific attributes of the
character in pg at byte location offset.

The mask_bits parameter defines which characteristics
you ��sh to know; this parameter should contain the
bit(s) set, according to the values listed ���ra, that
you ��sh to be "tested".

For example, if all you want to know about a character
is whether or not it is "blank", you would call
pgCharType and pass BLANK_B�� in mask_bits; if you
wanted to know if the character was blank or if the
character is a control character, you would pass
BLANK_B�� | C��_B��, etc. Selecting specific character
info bits greatly enhances the performance of this
function.

The result (and mask) can contain one or more of the
follo��ng bits:

#define BLANK_B��
0x00000001 �� Character is blank
#define WORD_BREAK_B�� 0x00000002
�� Word breaking char
#define WORD_SEL_B�� 0x00000004
�� Word select char
#define SO���HYPHEN_B�� 0x00000008
�� Soft hyphen char
#define INCLUDE_BREAK_B�� 0x00000010

�� Word break but include ��th word
#define INCLUDE_SEL_B�� 0x00000020
�� Select break but include ��th word
#define C��_B��
0x00000040 �� Char is a control code
#define INVIS_AC��ON_B�� 0x00000080
�� Char is not a display char, but arro�, bksp, etc
#define PAR_SEL_B��

0x00000100 �� Char breaks a paragraph
#define LINE_SEL_B�� 0x00000200
�� Char breaks a line (soft CR)
#define TAB_B��
0x00000400 �� Char performs a TAB
#define FIR���HALF_B�� 0x00000800
�� First half of a multi-byte char
#define LA���HALF_B�� 0x00001000

�� Last half of a multi-byte char
#define ��DDLE_CHAR_B�� 0x00002000
�� ��ddle of a multi-byte char run
#define CONTAINER_BRK_B�� 0x00004000
�� Break-container bit
#define PAGE_BRK_B�� 0x00008000
�� Break-repeating-shape bit
#define NON_BREAKA���R_B�� 0x00010000
�� Char must stay ��th char(s) after it
#define NON_BREAKBEFORE_B�� 0x00020000

�� Char must stay ��th char(s) before it
#define NUMBER_B��
0x00040000 �� Char is numeric
#define DEC��AL_CHAR_B�� 0x00080000
�� Char is dec��al mark (for dec��al tab)
#define UPPER_CASE_B�� 0x00100000
�� Char is MAJUSCULE
#define LO��R_CASE_B�� 0x00200000
�� Char is ��nuscule
#define SYMBOL_B��
0x00400000 �� Char is a symbol
#define EUROPEAN_B�� 0x00800000
�� Char is ASCII-European
#define NON_ROMAN_B�� 0x01000000

�� Char is not Roman script
#define NON���X��B�� 0x02000000
�� Char is not really text
#define FLA��QUO��_B�� 0x04000000
�� Char is a typewriter quote
#define SINGLE_QUO��_B�� 0x08000000
�� Quote char is single ' quote
#define LE���QUO��_B�� 0x10000000
�� Char is a left quote
#define RIGH��QUO��_B�� 0x20000000

�� Char is a right quote
#define PUNC��NORMAL_B�� 0x40000000
�� Char is normal punctuation
#define OTHER_PUNC��B�� 0x80000000
�� Char is other punctuation in multi-byte

/* Convenient char_info macro for any quote char in
globals: */
#define QUO��_B��� (FLA��QUO��_B�� |
SINGLE_QUO��_B�� | LE���QUO��_B�� |RIGH��QUO��_B��)

/* CharInfo/pgCharType convenient mask_bits */
#define NON��U���BY��_B��� ((FIR���HALF_B�� |
LA���HALF_B��))
#define WORDBREAK_PROC_B��� (�ORD_BREAK_B�� |
WORD_SEL_B�� |NON_BREAKA���R_B�� |
NON_BREAKBEFORE_B��)

NO��: When pgCharType is called, HER��S Paige calls the
char_info function for the style assigned to the
character at the specified offset.

If you need additional information about a character—or
to obtain the character itself—use pgCharByte. This
function ��ll return the length of the character at
byte location offset (remember that a character can be
more than one byte). In addition to returning the
length, the character itself ��ll be copied to the
buffer pointed to by char_bytes; make sure that this
buffer contains enough space to hold a potential multi-
byte character.

When calling pgCharByte, if the specified offset calls
for a byte in the ��ddle of a character, the
appropriate adjus��ent ��ll be made by HER��S Paige so
the whole character is returned in char_bytes; the
function result (length of character) ��ll also reflect
that adjus��ent. Hence, it ��ll a��ays return the whole
character size even if offset indicates the last byte
of a multi-byte character.

You can also use pgCharByte just to deter��ne the
length of a character: by passing a NULL pointer to
char_bytes, pgCharByte s��ply returns the character
size.

��CH NO��: Control characters don't draw

HER��S Paige makes the assumption that all
control characters (less than ASCII space)
should be "invisible." Rightly or wrongly, this
is the default behavior we chose to avoid
dra��ng unwanted, garbage characters. Hence, if

you insert a "command" char (ASCII 17) it ��ll
be drawn as a blank.

The correct workaround is to override HER��S Paige's
default character handling in this one special case.
This is not as difficult or complex as it may first
seem and I ��ll illustrate the exact code you need to
��plement:

Right after pgInit, you need to place a function
pointer in HER��S Paige globals default style "hook"
for getting character info. This function pointer ��ll
point to some small code that you ��ll write (�hich I
��ll show you). Let's suppose your HER��S Paige globals
is called paigeGlobals and this (ne�) function you ��ll
write is called CommandCharInfo. Right after pgInit,
you do this:

paigeGlobals.def_style.procs.char_info =
CommandCharInfo;

This sets CommandCharInfo as the "default" function for
all future styles, and HER��S Paige calls that function
to find out about a character of text. The
CommandCharInfo function definition must look like the
function example belo�. This function's main duty in
life is to tell HER��S Paige that the command character
�s �ot blank, other��se it just falls through and calls
the standard charInfo function:

�� This function can be used to override "get
character info"

��nclude "defprocs.h" �� You MU�� INCLUDE this for
function to compile

PG_PASCAL (long) CommandCharInfo (paige_rec_ptr pg,
style��alk_ptr style��alker, pg_char_ptr data, long
global_offset, long local_offset, long mask_bits)
{

if (data[local_offset] �� 17) �� If
"command char"

return (�ask_bits & (�ORD_BREAK_B��
| WORD_SEL_B��));

�� other��se, just call the standard HER��S

Paige charInfo function:

return pgCharInfoProc(pg, style��alker,
data, global_offset, local_offset, mask_bits);
}

For more information on char_info_proc, see
char_info_proc.

Many applications that want to display the Command
Character may want to display other special characters,
so I thought you ��ght prefer including something like
the attached code in your examples as an alternative to
the above.

��nclude <Fonts.h>
PG_PASCAL (long) CommandCharInfo(paige_rec_ptr pg,
style��alk_ptr style��alker, pg_char_ptr data, long
global_offset, long local_offset, long bits)
{

s��tch(data[local_offset])
{

case commandMark:
case checkMark:
case diamondMark:
case appleMark:

return (bits &
(�ORD_BREAK_B�� | WORD_SEL_B��));

}
return pgCharInfoProc(pg, style��alker,

data, global_offset, local_offset, bits);
}

24.7 Finding The Boundaries (�ord,
line or paragraph)

(void) pgFindWord (pg_ref pg, long offset, long
PG_FAR *first_byte, long PG_FAR *last_byte,
pg_boolean left_side, pg_boolean smart_select);
(void) pgFindCt��ord (pg_ref pg, long offset, long
PG_FAR *first_byte, long PG_FAR *last_byte, short
left_side);
(void) pgFindPar (pg_ref pg, long offset, long
PG_FAR *first_byte, long PG_FAR *last_byte);

(void) pgFindLine (pg_ref pg, long offset, long
PG_FAR *first_byte, long PG_FAR *last_byte);

NO��: The term "find" in these functions does not ��ply
a context search; rather, it refers to locating the
bounding text positions at the beginning and ending of
a section of text.

These function can be used to locate words, paragraphs,
or lines.

For all functions, the offset parameter should indicate
where to begin the search. This is a zero-indexed byte
offset.

For pgFindWord, *first_byte and *last_byte ��ll get
set to the nearest word boundary beginning from offset.

NO��: *first_byte can be less than offset, but
*last_byte ��ll a��ays be equal to or greater than
offset. If left_side is TRUE, the word to the
��mediate left is located if offset is not currently in
the ��ddle of a word.

For example, suppose the specified offset sat right
after the word the and before a . (full stop). If
left_side is FALSE, the "word" that is found would be
. but if left_side is TRUE, the word found would be
the.

The smart_select parameter tells pgFindWord whether or
not to include trailing blank characters for the word
that has been found. If smart_select is TRUE, then
trailing blanks ("spaces") that follow the word are
included. Example: If the text contained This is a test
for find word, if smart_select is TRUE then finding
the word test ��ll return the offsets for test__
(�here _ represent spaces).

The pgFindCt��ord function works exactly the same as
pgFindWord except "words," in this case, are sections
of text separated by control codes such as tab and CR.
("Control codes" is used here to explain this function,
but in actuality a character is considered only a
"control" char by virtue of what is returned from the
char_info_proc—see “Custo��sing HER��S Paige”.

The pgFindPar and pgFindLine return the nearest
paragraph boundaries or the nearest line boundaries to
offset, respectively.

24.8 Line and Paragraph Numbering

NO��: The attribute bit COUN��LINES_B�� �ust be set in
the pg_ref for any of the follo��ng functions to work.
This attribute can be set either by including it ��th
other bits in the flags parameter for pgNew, or can be
set ��th pgSetAttributes.

CAU��ON: Constantly counting lines and paragraphs,
particularly ��thin a large document ��th word wrapping
enabled and complex style changes can consume
considerable processing t��e. Hence, the
COUN��LINES_B�� has been provided to enable line
counting only for applications that truly need this
feature.

Line Numbering

(long) pgNu��ines (pg_ref pg);

Returns the total number of lines in pg. This function
��ll return zero if COUN��LINES_B�� has not been set in
pg (see previous note).

NO��: A "line" in an HER��S Paige object is s��ply a
horizontal line of text which may or may not end ��th a
CR or LF character. If word wrapping has been enabled,
a line can ter��nate either because it word-wrapped or
because it ended ��th CR.

CAU��ON: This function may consume a lot of t��e if the
document is relatively large and has not been paginated
to the end of the document. This is because HER��S
Paige cannot possibly know how many word-wrapping lines
exist unless it computes every line in the document
from beginning to end; even if word-wrapping is
disabled, HER��S Paige must still count all the line
breaks (CR characters) if text has recently been
inserted.

NO��: HER��S Paige ��ll a��ays take the fastest
approach wherever possible, e.g. if the document has

already been fully paginated this function ��ll return
a relatively instant response.

(long) pgOffse��oLineNum (pg_ref pg, long offset,
pg_boolean line_end_has_precedence);

Returns the line number that contains offset text
position. The line number is o�e-��dexed (i.e., the
first line in pg is 1). The offset parameter can be
any position from 0 to pgTextSize(pg), or
CURREN��POS���ON for the current insertion point.

This function ��ll a��ays return at least one line even
if the document has no text (since an empty document
still has one line, albeit blank).

If line_end_has_precedence is TRUE, then the line
number to the ��mediate left of offset is returned in
situations where that offset is on the boundary be��een
��o lines.

NO��: The only t��e this happens is when the specified
offset is precisely at the end of a word-wrapping line
and there is another line below that.

For example, consider the insertion point ��thin the
follo��ng ��o lines:

This is a line of text in HER��S Paige and the
insertion
|
point is sitting on the end of the line above.

NO��: In the example above, the "|" point text offset
could be interpreted to be the end of the first line or
the beginning of the next line. Since HER��S Paige
can't possibly know which one is desired, the
line_end_has_precedence parameter has been provided.
From the above example, if line_end_has_precedence is
TRUE, the first line would be returned; other��se, the
second line would be returned.

(void) pgLineNumToOffset (pg_ref pg, long line_nu�,
long *begin_offset, long *end_offset);

Returns the text offset(s) of line_num line. The
line_num parameter is one-indexed (i.e., the first line
of text is 1 and not 0).

The beginning text position of the line is returned in
*begin_offset and the ending position is returned in
*end_offset; both values ��ll be zero-indexed (first
position of text is zero). Either begin_offset or
end_offset can be a null pointer, in which case it is
ignored.

Paragraph numbering

(long) pgNumPars (pg_ref pg);

Returns the total number of paragraphs in pg. This
function ��ll return zero if COUN��LINES_B�� has not
been set in pg (see note at the top of this section).

NO��: A "paragraph" in an HER��S Paige object is s��ply
a block of text that ter��nates ��th a CR character (or
CR/LF), or the last (or only) block of text in the
document. This has nothing to do ��th word wrapping; in
fact, if word wrapping has been disabled, lines and
paragraphs are considered to be one and the same (since
a line would only break on a CR character).

(long) pgOffse��oParNum (pg_ref pg, long offset);

Returns the paragraph number that contains offset text
position. The paragraph number is one-indexed (i.e.,
the first paragraph in pg is 1). The offset parameter
can be any position from 0 to pgTextSize(pg), or
CURREN��POS���ON for the current insertion point.

This function ��ll a��ays return at least one paragraph
even if the document has no text (since an empty
document still has one "paragraph" albeit empty).

(void) pgParNumToOffset (pg_ref pg, long par_nu�,
long *begin_offset, long *end_offset);

Returns the text offset(s) of par_num paragraph. The
par_num parameter is one-indexed (i.e., the first

paragraph of text is 1 and not 0).

The beginning text position of the paragraph is
returned in *begin_offset and the ending position is
returned in *end_offset; both values are zero-indexed
(first position of text is zero). Either begin_offset
or end_offset can be a null pointer, in which case it
is ignored.

NO��: The ending offset of a "paragraph" ��ll be the
position after its CR character (or the end of text if
last or only paragraph in the document).

Line and paragraph bounds

(void) pgLineNumToBounds (pg_ref pg, long line_nu�,
pg_boolean want_scrolled, pg_boolean want_scaled,
line_end_has_precedence, rectangle_ptr bounds);

Returns the bounding rectangular area that encloses
line_num line. The line number is one-indexed (first
line in pg is 1 and not 0).

The bounding rectangle is returned in *bounds (�hich
must not be a null pointer).

If want_scrolled is TRUE, the bounding rectangle ��ll
be offset to reflect the current scrolled position of
pg, if any; if want_scaled is TRUE, the bounding
rectangle ��ll be scaled to pg's current scaling
factor, if any.

NO��: The ��dth of the rectangle that is returned ��ll
be the ��dth of the text in the line, which is not
necessarily the ��dth of the visible area nor is it
necessarily the same as the document's page ��dth; the
line ��dth can also be zero if the line is completely
empty.

(void) pgParNumToBounds (pg_ref pg, long par_nu�,
pg_boolean want_scrolled, pg_boolean want_scaled,
rectangle_ptr bounds);

Returns the bounding rectangular area that encloses
par_num paragraph. The paragraph number is one-indexed

(first paragraph in pg is 1 and not 0).

The bounding rectangle is returned in *bounds (�hich
must not be a null pointer).

If want_scrolled is TRUE, the bounding rectangle ��ll
be offset to reflect the current scrolled position of
pg, if any; if want_scaled is TRUE, the bounding
rectangle ��ll be scaled to pg's current scaling
factor, if any.

NO��: The ��dth of the rectangle that is returned ��ll
be the ��dth of all composite lines ��thin the
paragraph, which is not necessarily the ��dth of the
visible area nor is it necessarily the same as the
document's page ��dth; the paragraph ��dth can also be
zero if the paragraph is completely empty.

��CH NO��: Getting pixel height be��een lines

What's the best way to calculate the pixel
height of the text be��een given startline and
endline? (replacing ��GetHeight (endLine,
startLine, mac��)).

The easiest approach depends on how you are currently
deter��ning the text location of these ��o "lines." In
your question you mention copying the lines to another
pg_ref. But how did you figure out where the boundaries
are of these ��o lines?

I ��ll assume that you already know the text offset
position for the start of each line. In this case, you
can s��ply use pgCharacterRect for each text position
and subtract the first rectangle's top from the second
rectangle's botto�, which would be the line height
difference be��een the�.

Another method which is not as fast (but is certainly
faster than your chosen method of copying the text into
a temporary pg_ref) is to make a temporary highlight
region for the text range, then get the enclosing
bounds rect for the highlight. To get a highlight
region, use pgGetHiliteRgn (you also have to know the
text positions for each line). The way this function
works is that you first create a shape (using
pgRec��oShape(�pg��globals, NULL)) and passing that
shape to pgGetHiliteRgn. Then to get the "bounds" area
of the shape, you use pgShapeBounds(shape, &rectangle).

24.9 Character type

(long) pgFindCharType (pg_ref pg, long char_info,
long PG_FAR *offset, pg_char_ptr the_byte);

This function locates the first character in pg that
matches char_info, beginning at byte offset *offset.

The char_info parameter should be set to one or more of
the character info bits as explained for
char_info_proc. See section 24.6, Information About a
Particular Character.

For example, to search for a return character, you
would pass PAR_SEL_B�� for char_info (�hich ��ll
locate a character that can break a paragraph).

If the_byte pointer is non-null, the character located,
if any, gets placed into the buffer to which it points.

CAU��ON: Given that characters in HER��S Paige can be
more than one byte, you �ust be sure that the character
found ��ll fit into the buffer. If you aren't sure,
then pass a null pointer for the_byte until you get the
information about the character, then make another call
to get the data.

FUNC��ON RESU��: The complete character type is
returned (all the appropriate char_info_proc bits ��ll
be set). The offset parameter ��ll be updated to the
byte offset for the character found. If the character
in question was �ot found, this function ��ll return
*offset equal to the text size in pg.

24.10 Change counter

(long) pgGetChangeCtr (pg_ref pg);
(long) pgSetChangeCtr (pg_ref pg, long ctr);

HER��S Paige maintains a "changes made" counter which
you can use to detect changes made to the object; for
every change made (insertions, deletions, style
changes, etc.), the change counter is incremented.
Additionally, a pgUndo ��ll decrement the counter.

This counter begins at zero when a new pg_ref is
created; to get the counter, call pgGetChangeCtr. To
set it, call pgSetChangeCtr ��th ctr as the new value.

��CH NO��: When does change counter change?

I'm using this counter to tell myself whether I
need to resave the document. Why is the count
different from what I expect?

This counter is changed by HER��S Paige anyt��e it
thinks it needs to be changed. It changes for
everyt���g. We use our own change counter in the demo
to keep track of when we need to resave the document.

I suggest that you may want to keep your own change
counter.

24.11 Text and selection positions

(void) pgTextRect (pg_ref pg, select_pair_ptr
range, pg_boolean want_scroll, pg_boolean
want_scaled, rectangle_ptr rect);
(void) pgCharacterRect (pg_ref pg, long position,
short want_scrolled, short want_scaled,
rectangle_ptr rect);

These functions can be used to compute outline(s)
around one or more characters.

For pgTextRect, a rectangle is returned in rect that
exactly encloses the text range in range. If
want_scroll is TRUE, the rectangle is "scrolled" to
the location where it would appear on the screen,
other��se it remains relative to pg's top-left of
page_area. If want_scaled is TRUE, the rectangle is
scaled to the scale factor set in pg.

To get the rectangle surrounding a single character,
call pgCharacterRect which does exactly the same thing
as pgTextRect, except in that you give it a single-byte
offset.

(long) pgP��oChar (pg_ref pg, co_ordinate_ptr

point, co_ordinate_ptr offset_extra);

FUNC��ON RESU��: This function returns the (byte)
offset of the first character that contains point. If
offset_extra is non-null, the point is first offset by
that much before the character is located.

24.12 Getting the Max��um Text
Bounds

HER��S Paige computes the smallest rectangle that ��ll
fit around all text when you call:

(void) pgMaxTextBounds (pg_ref pg, rectangle_ptr
bounds, pg_boolean paginate);

Returns the smallest bounding rectangle pointed to in
bounds that encloses all the text in pg. The bounds
parameter must point to a rectangle and can't be a null
pointer.

The d��ensions of bounds essentially gets set to the
top of the first line for the rectangle's top, the line
furthest to the left and right for the rectangle's left
and right sides, and the furthest line to the bottom
for the rectangle's botto�.

If paginate is TRUE then HER��S Paige ��ll repaginate
the document if necessary to render the most accurate
possible d��ensions.

NO��: When paginate is TRUE the pagination can be
slower, but if you pass FALSE you won't a��ays get an
accurate measurement.

CAU��ON: Paginating a large document can consume a lot
of t��e. However, the only way HER��S Paige can
possibly return exact d��ensions is if every line has
been calculated from top to botto�.

How to call pgMaxTextBounds

rectangle bounds; long doc���dth;
pgMaxTextBounds(pg, &bounds, TRUE);

doc���dth = bounds.bot_right.h - bounds.top_left.h;

The doc���dth in the above example would be the ��dth
of the ��dest text line (from the left margin to the
right side of the last character).

��CH NO��: Expanding the page_area as text is
typed

I want to set an ever-expanding page_area that
grows as the user types, but only if I need to.
How and when should I do that ��th
pgMaxTextBounds?

As for changing the page area of the pg_ref, yes, you
should use pgSetAreas and/or pgSetAreaBounds—but only
when it really changes and/or only when you physically
want to expand it.

To answer your question as to w�e� you figure out the
doc ��dth, I would not do it every key insertion (you
are right, that would be very slo�, particularly when
text gets fairly large). The best way to detect the
document's height has grown is to exa��ne a field
inside the pg_ref called overflo��size. This field
gets set by HER��S Paige if and when one or more
characters have flowed below the bottom of your page
area.

For this feature to work, however, you need to set
CHECK_PAGE_OVERFLOW ��th pgSetAttributes2(). By
setting this attribute, HER��S Paige ��ll check the
"character overflow" situation after every operation
that can cause text to change.

So after anything that ��ght cause an overflow (�hich
would notify the need to change the page rectangle),
check overflo��size as follows:

long CheckOverflo�(pg_ref pg)
{

paige_rec_ptr pg_rec;
long overflo��a��;

pg_rec = UseMemory(pg);
overflo��a�� = pg_rec �� overflo��size;
UnuseMemory(pg);

return (overflo��a��);
}

In the above example, the function result is the number
of character(s) that overflow the bottom of the page
rectangle. If overflo��size is -1, the text overflows
the bottom only by a single CR character (i.e. blank
line).

24.13 Unique value

This function obtains a unique ID value unique ��thin a
pg_ref.

(long) pgUniqueID(pg_ref pg);

This s��ply returns a number guaranteed to be unique
("unique" compared to the previous response from
pgUniqueID).

This function s��ply increments an internal counter
��thin pg and returns that number, hence each response
from pgUniqueID is "unique" from the last response. The
very first t��e this function gets called after pgNew,
the result ��ll be 1.

The intended purpose of this function is to place
something in a style_info or par_info record to make
it "unique" so it ��ll be distinguished from all other
style runs in pg. Other than that, this function is
rarely used by an application.

For example, if an application applied a custo��sed
style to a group of characters, as far as HER��S Paige
is concerned that style ��ght look exactly like the
style(s) surrounding those characters; since HER��S
Paige ��ll automatically delete redundant style runs,
custo��sed styles generally need to place something in
one of the style_info fields to make it "unique."

24.13 Filling a Structure

��nclude "MemMgr.h"
(void) pgFillBlock (void PG_FAR *block, long
block_size, pg_char value);

pgFillBlock fills a memory block of block_size byte
size ��th byte value in pg_char parameter.

24.15 Splitting a long byte

��nclude "pgUtils.h"
(short) pgLoWord(long value);
(short) pgH��ord(long value);

It is often necessary to split a long into ��o shorts.
This is a cross-platform way of doing just that. The
low word returns the least significant short, the high
word returns the most significant.

24.16 Maths

��nclude "pgUtils.h"
(long) pgAbsoluteValue(long value);
(pg_fixed) pgRoundFixed(pg_fixed fix);
(pg_fixed) pgMultiplyFixed(pg_fixed fix1, pg_fixed
fix2);
(pg_fixed) pgDivideFixed(pg_fixed fix1, pg_fixed
fix2);
(pg_fixed) pgFixedRatio(short n, short d);

pgAbsoluteValue — returns an absolute value.

pgRoundFixed — rounds the fixed number to the nearest
whole (but is still a pg_fixed). For example,
0x00018000 ��ll return as 0x00020000.

pgMultiplyFixed - multiplies ��o fixed dec��al numbers
(a fixed dec��al is a long whose high-order word is the
integer and low-order word the fraction. Hence,
0x00018000 = 1.5.

pgDivideFixed — divides fixed number fix1 into fix2 (a
fixed dec��al is a long whose high-order word is the
integer and low-order word the fraction. Hence,
0x00018000 = 1.5).

pgFixedRatio - returns a fixed number which is the
ratio of n : d (a fixed dec��al is a long whose high-
order word is the integer and low-order word the
fraction). Hence, 0x00018000 = 1.5.

25 THE ALLOCA��ON MANAGER

This section deals exclusively ��th the Allocation
Manager ��thin HER��S Paige (the portion of sof��are
that creates, manages and disposes memory allocations).

25.1 Up and Running

The Allocation Manager used by HER��S Paige is full of
features that have been requested by developers and
used by HER��S Paige itself. All these features are
available to you as a developer.

Like most of HER��S Paige, there are just some basics
to know about the Allocation Manager to initially use
it effectively.

These are:

1. To allocate a block of memory, you call a function
that returns an "ID" code (not a pointer or an
address).

2. Then to access that memory, you pass the "ID" code
to a function which returns an address to that
memory.

3. Once you are through accessing that memory, you
report its "non-use" by calling another function.

4. "Reporting" to the allocation manager when you are
accessing a memory block and when you are through
makes virtual memory possible (blocks can be purged
that are not in use).

5. Memory allocations do not have to be byte-oriented,
rather they can be groups of logical records. For
example, a memory allocation can be defined as a
group of 100-byte records.

S��ple example to allocate some memory and use
it:

/* Allocation: */
memory_ref allocation;
allocation = MemoryAlloc(�me��globals,

sizeof(char), 100, 0);

/* Note: "me��globals" is the pg��globals

field in the HER��S Paige globals, same struct given
to pglnit and pgNe�. The "allocation" result is not
an address, but an "ID" code. To get the address,
call: */

char *memory_address;
memory_address = UseMemory(allocation);

/* In the above, not only is the memory
addressed returned but the memory is now locked and
unpurgable. Thus it is ��portant to "report" when
you are through accessing it: */

UnuseMemory(allocation);

/* Tell Allocation Manager we are done. */

�� Once you are completely through, dispose
the allocation:

DisposeMemory(allocation);

25.2 Theory

Since HER��S Paige is intended to operate on multiple
platforms, it became necessary to remove the majority
of its code as far away from a specific operating
system as possible.

An integral part of any computer OS is its memory
management syste�. However, no ��o memory management
designs are alike, and for this reason HER��S Paige's
Allocation Manager works as follows:

1. HER��S Paige only creates memory allocations
through high-level functions, far removed from the
operating syste�. Among these functions are
MemoryAllocate, MemoryDuplicate and MemoryCopy.

2. Regardless of platfor�, functions to allocate
memory remain constant (the same function names and
parameters are the same regardless of the OS).

3. To allow for virtual memory and debugging features,
HER��S Paige must inform the Allocations Manager,
as a rule, when it is about to access a block of

memory and when it is through accessing that block.
The purpose of this is threefold:

1. If no part of HER��S Paige is accessing a
memory block, the Allocation Manager can
"unlock" the block and allow it to relocate for
max��um memory efficiency,

2. Blocks of memory can be temporarily purged if
they are not being accessed.

3. Debugging features can be ��plemented: since
the main sof��are must "ask" for access to a
block of memory, the Allocation Manager can
check the validity of the block at that t��e
(�hen running in "debug mode").

4. Since memory is never allocated directly, the
Allocation Manager can provide additional features
to a block of memory. Among the features that exist
in HER��S Paige's Allocation Manager are logical
record sizes (a block of memory can be an array of
records, as opposed to bytes), nested "lock memory"
capability (�ore than one function can "lock" a
block from relocating or purging, in which case the
block can not be free for relocation or purging
until each "lock" has been "unlocked").

25.3 Memory Block References

As far as HER��S Paige (and your application) is
concerned, when memory is allocated. the Allocation
Manager does not return a memory address; rather, it
returns an ID number called a memory_ref. You can
consider a memory_ref as s��ply a long word whose
value, when given later to the Allocation Manager, ��ll
identify a block of memory.

25.4 Access Counter

Frequent reference is made in this chapter to a memory
reference's access counter.

Every block of memory created through the Allocation
Manager has an associated access counter. This counter
increments every t��e your program requests the block
to become locked (non-relocatable and non-purgeable),
and decrements for every request to unlock the block
(�aking it re-locatable and purgeable). The purpose of

this is to allow nested "lock/unlock" logic as opposed
to a s��ple locked or unlocked state: using the access
counter method, Allocation Manager ��ll make a block
relocatable or purgeable only when its access counter
is zero. This provides protection against memory blocks
moving "out from under" nested situations.

25.5 Logical v. Physical Sizes

Every allocation made through the Allocation Manager is
considered to have ��o sizes: a logical size and a
physical size. (For how this is ��plemented, see The
extend_size parameter under section 28.8).

The physical size of a block is the actual amount of
reserved memory that has been allocated, in bytes; the
logical size, however, may or may not be the same
amount and in fact is often smaller.

The physical size of an allocation ��ght be, for
example, ��0 \mathr�{~K}� but its logical size ��ght be
as small as zero. The purpose of the ��o-size
distinction is speed and performance. Depending on the
OS, physically resizing a block of memory can consume
large amounts of t��e, particularly in tight situations
where thousands of blocks require relocation or purging
just to append additional memory to one block. For this
reason, the Allocation Manager may elect to allocate a
block larger (physical size) than what you have asked
for but "tell" you it is a smaller size (logical size);
then if you asked for that block to be extended to a
large size, the extra space ��ght already exist, in
which case the

Allocation Manager merely changes its logical size
��thout any need to expand the block physically.

Generally, it is a block's logical—�ot physical—size
that your program should a��ays work ��th.

25.6 Purged Blocks

All references in this chapter to purging and purged
blocks ��ply virtual memory, in which a block's
contents are saved to a scratch file so that the
allocation can be temporarily disposed. Such
allocations are not lost, rather they recover on demand
by reloading from the scratch file. At no t��e does the

Allocation Manager permanently dispose an allocation
unless you explicitly tell it to do so.

25.7 Starting Up

The Allocation Manager must have already been started
before Y was called. You need to make any function
calls to initialise this portion of the sof��are. To
start HER��S Paige ��th the Allocation Manager and for
details on pgMe��tartup, see section 2.4, Sof��are
Startup.

CAU��ON: You must not, however, use any functions
listed below unless you have called pgMe��tartup.

NO��: You can theoretically use the Allocation Manager,
by itself, ��thout ever initialising HER��S Paige.

25.8 Allocating and Deällocating
Memory

To allocate memory through the Allocation Manager, call
one of the follo��ng:

(�emory_ref) MemoryAlloc (pg��globals_ptr globals,
pg_short_t rec_size, long nu��recs, short
extend_size);
(�emory_ref) MemoryAllocClear (pg��globals_ptr
globals, pg_short_t rec_size, long nu��recs, short
extend_size);

MemoryAlloc allocates a block of memory and returns a
memory_ref that identifies that block;
MemoryAllocClear is identical except in that it clears
the block (sets all bytes to zero).

By allocation is meant a block of memory of some
specified byte size that becomes reserved exclusively
for your use, guaranteed to remain available until you
deällocate that block (using DisposeMemory, belo�).

Both functions return a memory_ref, which is a
reference ID to the allocation. You should neither
consider a memory_ref to be an address nor a pointer.
Rather, give this reference to the various functions

listed below to get a pointer to the memory block,
change its allocation size, make it purgeable or
nonpurgeable, etc.

The memory_ref returned is a��ays non-zero if it
succeeds or M���NULL (zero) if it fails. The easiest
way to check for failures is by using HER��S Paige's
try/catch exception handling. See section 26.1, The
TRY/CATCH Mechanism, and Creating a memory_ref under
section 26.5.

The globals parameter must point to the me��globals
you gave to pgMe��tartup. Or, if you have initialised
HER��S Paige ��th pgInit() you can also access
me��globals through the HER��S Paige globals:

paige_globals.�e��globals;

The size of the allocation is deter��ned by the formula
rec_size * nu��recs, where rec_size is a record size,
in bytes, and nu��recs is the number of such records in
the block. Hence, you can create allocations that are
considered arrays of records, if necessary.

For example, allocating a block of rec_size = 16 and
nu��recs = 100, the total byte size of the allocation
would be 1600. The intended purpose of allo��ng a
record size, as opposed to a��ays creating blocks
consisting of single bytes, is to provide high-level
features of accessing record elements.

If you only want a block of bytes, ��thout regard to
any "record" size, s��ply create an allocation ��th a
"record" size of 1.

A rec_size of zero is not allowed; a nu��recs value of
zero, however, is allowed.

The extend_size parameter

The purpose of the extend_size parameter is to provide
the Allocation Manager ��th some insight, for
performance purposes, as to how large the allocation
��ght grow from subsequent Se��emorySize calls.

To understand this fully, a distinction be��een a
memory_ref's "logical size" versus "physical size" must

be clarified: when a memory_ref is initially created,
its logical size is s��ply the size that was asked for
(�hich is rec_size * nu��recs). However, the actual
size allocation can be greater than the logical size,
which essentially provides an extra "buffer" that can
be utilized to change the logical size later ��thout
the necessity to physically resize the allocation
through OS calls.

A good example of this would be the allocation of a
large string whose initial byte size begins at zero,
yet it is expected to grow larger in size as t��e goes
by, perhaps as large as 500 bytes in length. If such a
memory allocation started at a physical byte size of
zero, then it would become necessary (and very slo�) to
ask the OS to physically resize the allocation each and
every t��e new byte(s) were appended.

However, if such an allocation were initially created
��th a 500-byte extend_size (but a logical size of
zero), it would never need to physically resize unless
or until the string grew larger than 500 bytes.

Hence, MemoryAlloc could create such an allocation
whereby the physical size and logical size are
different:

MemoryAlloc(�me��globals, sizeof(byte), 0, 500);

The extend_size is therefore an enhancement tool, and
should be set to a reasonable amount according to what
the resizing forecast holds for that allocation. If the
allocation ��ll never be resized, extend_size should be
zero.

NO��: The value of extend_size does not necessarily
��ply future memory resizing ��ll occur or ��ll not
occur, rather it is a performance variable only: the
Allocation Manager ��ll still resize a memory
allocation even if extend_size is zero (although
possibly slower than if extend_size were larger).

See also section 25.5, Logical v. Physical Sizes.

NO��: The extend_size indicates a number of records
(each of size rec_size bytes), not bytes.

Deällocation

Once you no longer need a memory allocation, pass its
memory_ref to the follo��ng:

void DisposeMemory (�emory_ref ref);

DisposeMemory physically disposes the block assigned to
ref, and ref is no longer a valid reference
thereafter.

(�emory_ref) MemoryDuplicate (�emory_ref src_ref);
(void) MemoryCopy (�emory_ref src_ref, memory_ref
target_ref);

MemoryDuplicate returns a new memory_ref whose data
content and record size is exactly the same as src_ref.
In effect, this function returns a "clone" of src_ref,
but it is a ne�, independent memory_ref.

MemoryCopy copies the contents of src_ref into
target_ref.

MemoryCopy differs from MemoryDuplicate in that for
MemoryCopy both src_ref and target_ref are allocations

that already exist. MemoryDuplicate actually creates a
new memory_ref for you, so it cannot already exist.

The logical size of target_ref can be any size, even
zero, as MemoryDuplicate ��ll change its size as
necessary. Record sizes of each memory_ref, however,
must match.

The access counters are not set, since the memory is
allocated but not in use.

��CH NO��: Practical difference be��een
MemoryCopy and MemoryDuplicate

What is the difference really be��een
MemoryCopy and MemoryDuplicate? Please do
comment on the appropriate situation for using
either.

I can clarify the difference in usage be��een
MemoryCopy and MemoryDuplicate. It is very s��ple:

MemoryDuplicate is for obtaining a "clone" of a
memory_ref.
MemoryCopy is to ���� �� a preëx�st��g memory_ref
��th the contents of another.

In my own code, I am constantly wanting to copy
contents of a memory_ref into one that I created
earlier. One example of this is some routine that wants
to keep copying a bunch of different memory_refs—to
copy an array of "tabs" for instance. It would be a lot
slower to create a memory_ref ��th MemoryDuplicate,
then dispose it, then create it again, then then keep
copying different memory_refs into it.

25.10 Accessing Memory

Using memory

To obtain a pointer to a block of memory allocated from
MemoryAlloc or MemoryAllocClear, call one of the
follo��ng:

(void PG_FAR*) UseMemory (�emory_ref ref);
(void PG_FAR*) UseForLongT��e (�emory_ref ref);

UseMemory and UseForLongT��e takes a memory_ref in
ref and returns a pointer to the memory block assigned
to that reference. The ref's access counter is
incremented, which means that the memory block is now
guaranteed neither to relocate nor purge (see section
25.4, Access Counter).

The pr��ary purpose of UseMemory is to tell the
Allocation Manager that a particular block of memory is
now "in use", in which case it is marked as unpurgeable
and nonrelocatable.

UseForLongT��e does exactly the same thing as
UseMemory except in that the memory block is relocated
in the opt��um way, before locking, to avoid memory
fragmentation. The purpose of using this function, as
opposed to UseMemory, is for situations where you know
the block ��ll stay locked for quite a while and you
don't want to cause unreasonable fragments.

NO��: Don't use UseForLongT��e too liberally because it
is substantially slower than UseMemory (since the
machine often needs to relocate the memory).

UseMemory and UseForLongT��e calls can be nested, but
each must be eventually balanced ��th UnuseMemory or
else the block ��ll remain in a locked state, which in
turn can cause memory difficulties such as
fragmentation and the inability to change the
allocation size.

Unuse memory

Once you are finished using the pointer returned from
UseMemory or UseForLongT��e, call the follo��ng:

(void) UnuseMemory (�emory_ref ref);

Essentially, UnuseMemory decrements ref's access
counter. If its access counter goes to zero, the
allocation is then free to relocate or purge.

It is therefore ��portant that all UseMemory and
UseForLongT��e calls get eventually ba�a�ced ��th
UnuseMemory, other��se unwanted locked memory fragments
��ll result.

25.11 "Random-Access" Pointers

You can obtain a pointer to a specific "record" ��thin
a block of memory by calling the follo��ng:

(void PG_FAR*) UseMemoryRecord (�emory_ref ref,
long wanted_rec, long seq_recs_used, short
first_use);

This function is s���lar to UseMemory except a pointer
to a specified record of an allocation is returned.

The wanted_rec is the (zero-indexed) record number you
need a pointer to. The record size (originally defined
in rec_size for MemoryAlloc) deter��nes which physical
byte the resulting pointer ��ll reference. For
instance, if the record size were, 128 bytes, a
UseMemoryRecord for wanted_rec of 10 would return a
pointer to the 1280th byte.

The seq_recs_used parameter should indicate how many
additional sequential records beyond wanted_rec record
you want access to. The purpose of this parameter is

for future Allocation Manager enhancements in which
partial block(s) can be loaded into memory from a
purged state. In such a case, UseMemoryRecord needs to
know how many additional sequential records, besides
wanted_rec, you would like to have loaded into memory
if the allocation has been purged.

For example, suppose a block of memory consisting of
1000 records is temporarily purged (�hich really means
its contents have been saved to a "scratch" file and
the block currently does not physically exist in
memory). Full access to all records would require the
Allocation Manager to load the entire allocation (all
1000 records). UseMemoryRecord, however, could get away
��th loading only a few records ��thin that allocation,
but it needs to know how many sequential records you
intend to access beyond wanted_rec.

If you want to use all records follo��ng wanted_rec,
whatever that quantity ��ght be, you can also pass
USE_ALL_RECS (value of -1) for seq_recs_used.

If first_use is TRUE, the block's access counter is
incremented (same thing as results from a UseMemory
call); if first_use is FALSE, the access counter
remains unchanged. The purpose of this parameter is for
situations where you intend to rando��y access many
records from the same memory_ref ��thin the same
routine, but you essentially need only one UseMemory to
lock the allocation; other��se, you would need to
balance every random access ��th UnuseMemory.

Thus, setting first_use to TRUE is essentially sending
the Allocation Manager the message, "Please lock the
allocation," then subsequent UseMemoryRecord calls ��th
first_use as FALSE is like saying, "I know the
allocation is already locked, so just give me another
pointer."

An UnuseMemory call must eventually balance each
UseMemoryRecord call that gave TRUE for first_use.

NO��: HER��S Paige loads the whole allocation specified
in UseMemoryRecord (does not do partial loads).
However, to guarantee future compatibility, you should
assume that all records in the allocation lower than
wanted_rec and all records greater than wanted_rec +
seq_recs_used are purged, not loaded, and therefore not

valid should you attempt to access them ��th the same
pointer.

25.12 "Quick Record"

If you s��ply want a copy of a single record from an
allocation, call the follo��ng:

void Ge��emoryRecord (�emory_ref ref, long
wanted_rec, void PG_FAR *record);

Record number wanted_rec (zero-indexed) in ref is
copied to the structure pointed to by record. The
access counter in ref is unchanged. Hence,
Ge��emoryRecord provides a way to get a single record
��thout the need to balance UseMemory and UnuseMemory.

It is your responsibility to make sure record is
sufficient size to hold a record from ref.

NO��: Ge��emoryRecord ��ll work correctly regardless of
the memory_ref's access counter state and regardless of
whether or not the allocation has been purged.

25.13 Changing Allocation Sizes

Memory sizes

(void) Se��emorySize (�emory_ref ref, long
wanted_size);
(long) Ge��emorySize (�emory_ref ref);

Se��emorySize changes the logical size of ref to
wanted_size. Ge��emorySize returns the logical size of
ref.

For both functions, the "size" is not a byte size, but
rather a record quantity. A Se��emorySize(ref, 10) for
an allocation whose record size is 500 bytes, the
allocation is set to 5000 bytes, i.e. 10 * 50;
Se��emorySize(ref, 10) for a 1-byte record size
allocation would result in a logical byte size of 10,
and so on.

If Se��emorySize fails for any reason, an HER��S Paige
exception is raised (see chapter 26, Exception
Handling).

Ge��emorySize returns the current size of (i.e., number
of records ��thin) ref.

Changing the size of an allocation whose access counter
is non-zero ��ght fail! (A non-zero access counter
means sufficient UnuseMemory calls have not been made
to balance UseMemory calls, resulting in a locked
allocation).

NO��: Ge��emorySize ��ll work correctly regardless of
the memory_ref's access counter state and regardless of
whether or not the allocation has been purged.

Record size, byte size

(short) Ge��emoryRecSize (�emory_ref ref);
(long) GetByteSize (�emory_ref ref);

Ge��emoryRecSize returns the record size in ref (�hich
��ll be whatever size you gave MemoryAlloc or
MemoryAllocClear when the allocation was made). This
function is useful for generic functions that need to
know a memory_ref's record size.

GetByteSize returns the byte size of ref (as opposed
to the number of records as in Ge��emorySize).
Essentially a memory_ref's byte size is its record size
t��es number of logical records.

NO��: Both functions above ��ll work correctly
regardless of the memory_ref's access counter state and
regardless of whether or not the allocation has been
purged.

��CH NO��: A bigger or smaller record size

Can I make my record size bigger after it is
allocated?

No. You can only change the number of records. You can
create a new memory_ref and copy the old data into the
new one using pgBlockMove.

25.14 Insert & Delete

(void PG_FAR*) Inser��emory (�emory_ref ref, long
offset, long insert_size);
(void PG_FAR*) AppendMemory (�emory_ref ref, long
append_size, pg_boolean zero_fill);

Inser��emory — inserts insert_size records into
ref's allocation at record position offset, then
returns a pointer to the first record inserted. The
new record(s) are not initialised to anything—the
allocation size is s��ply increased by insert_size
and one or more record(s) is moved to make room for
the insertion.
AppendMemory — does the same thing except the
"insertion" is added to the end of the memory
block: the allocation is increased by append_size
and a pointer to the first record of the appendage
is returned. If zero_fill is TRUE, the appended
memory is cleared to zeros.

Both Inser��emory and AppendMemory assume record
quantities, not byte sizes (i.e., Inser��emory for a
ref whose record size is 100 ��ll insert 200 bytes if
insert_size = 2).

For both functions, the access counter in ref is
incremented (or not) according to the follo��ng rules:

if ref's access counter is zero upon entry, the
requested memory is inserted, the access counter is
incremented by 1, and the allocation is set to its
"used" state (locked, unpurgeable);
if the access counter is 1 upon entry, it is
decremented to zero and unlocked, the requested
memory is inserted, then the access counter is
incremented and the allocation is set to its "used"
state;
if the access counter is greater than 1, nothing
occurs and the situation is considered illegal,
generating an error if debugging has been enabled
(see section 25.18, Debug Mode).

The reasoning behind these rules for the access counter
when inserting memory is the common situation wherein
multiple insertions need to occur ��thin a loop. Since

Inser��emory and AppendMemory allow an access counter
of 1, each repetitive insertion can avoid the
requirement of calling UnuseMemory.

CAU��ON: For insertions ��th an access counter of 1,
the pointer you had prior to Inser��emory or
AppendMemory ��ght be invalid after memory has been
inserted (the block ��ght relocate). Therefore, a��ays
update your pointer ��th whatever is obtained from the
function result.

��CH NO��: UnuseMemory after Inser��emory or
AppendMemory

So do I need to do a UnuseMemory after these?

Inser��emory and AppendMemory really are the same as
Se��emorySize to a larger number of records, then a
(single) UseMemory. So you need to do a single
UnuseMemory() after a series of repetitive inserts. In
other words, if you called Inser��emory() or
AppendMemory() 100 t��es, you only need to do o�e
UnuseMemory().

struct my_special_struct
{

short index_number;
}
for (i = 0, i < 100, i��)
{

my_ne��record = Inser��emory(the_ref, i,
sizeof(�y_special_struct));

my_ne��record.index_number = i;
}
UnuseMemory(the_ref);

Delete

(void) DeleteMemory (�emory_ref ref, long offset,
long delete_size);

DeleteMemory deletes delete_size records in ref
beginning at offset. Both delete_size and offset are
record quantities, not bytes.

The access counter is not changed by this function.
However, the access counter must be zero when this
function is called.

25.15 Purging Utilities

NO��: All references in the Chapter to "purging" and
"purged blocks" ��ply virtual memory, in which a
block's contents are saved to a scratch file so that
the allocation can be temporarily disposed. If the
scratch file was not set up when the Allocation Manager
was initialised, there ��ll be no purging.

NO��: The topic covered herein is not to be confused
��th "purging" resources on the Mac. Allocation Manager
knows nothing about the Mac other than basic things
about the file syste�. It handles its own "purging"
��thout the Resource Manager.

An allocation is said to be "purged" when additional
memory space needs to be freed, thus an allocation is
saved to a "scratch" file and it is temporarily
disposed.

Purge priorities

The priority for purging, i.e., what memory_refs should
get purged first, can be controlled by calling the
follo��ng:

(void) Se��emoryPurge (�emory_ref ref, short
purge_priority, pg_boolean no_data_save);

The ref allocation's purging priority is set to
purge_priority. The purge_priority can be any number
be��een 0 and 255, ��th 0 as the lowest priority (��ll
get purged first above all others). The purge_priority
parameter can also be NO_PURGING_��ATUS (OXFF), in
which case it ��ll never be purged.

If no_data_save is TRUE, the contents of ref do not
need to be saved to a scratch file when purged. Another
way to state this is a ref ��th TRUE for no_data_save
is known to have nothing in its contents of any value
or consequence; thus, Allocation Manager can s��ply
purge it ��thout saving any of its contents.

An example of a memory_ref that could be set for
no_data_save would be an "offscreen bi��ap" buffer.
After it is used to transfer an ��age, an application
��ght not care if all its contents get temporarily
disposed, because on the next usage whole new contents
(new bits) ��ll be created all over again anyway.

Notes

1. This function ��ll still work regardless of ref's
access counter state and regardless of whether or
not it is purged.

2. A memory_ref whose access counter is nonzero ��ll
not be purged, even if its purge priority is zero.

3. Setting NO_PURGING_��ATUS on a memory_ref that has
already been purged ��ll not take effect until it
is unpurged. In other words, changing purge status
does not automatically reload purged allocations—
you still need to access its pointer (such as
UseMemory) if you want its contents loaded into
memory.

Purging memory

(pg_error) MemoryPurge (pg��globals_ptr globals,
long ��n��u��amount, memory_ref mask_ref);

MemoryPurge ��ll purge memory_ref(s) until at least
��n��u��amount of memory (in bytes) has become
available.

The globals parameter must be a pointer to the same
structure given to MemoryAlloc (�hich is also the
me��globals field ��thin the structure given to
pgInit).

If mask_ref is non-null, that memory_ref is considered
"masked" (protected) and ��ll not be purged during this
process.

All purgeable, unlocked allocations ��ll be purged, one
at a t��e and in the purge priority they are set for
(lowest purge priorities are taken first) until
��n��u��amount of available space has been achieved.

If ��n��u��amount fails to become available, even after
purging every eligible allocation, MemoryPurge ��ll
return an error (see chapter 39, Error Codes); if
successful, the function result ��ll be NO_ERROR (0).

The ��n��u��amount specified is for the total memory
available, which means if there is already enough or
nearly as much available as ��n��u��amount, very little
��ll get purged.

Notes

1. The amount of "available memory" is based on what
was given to pgInit for max��emory ��nus the total
physical sizes of all existing memory_refs—see
pgInit.

2. You normally do not need to call this function
since MemoryPurge gets called for you as required
for allocations and resizing blocks. The function
has been provided mainly for freeing memory for
objects that you are not allocating ��th the HER��S
Paige Allocation Manager.

3. Even though this function ��ght return no error
(success), that still does not necessarily
guarantee a block of ��n��u��amount can be
allocated, because the available memory ��ght not
be contiguous.

25.16 Allocation Manager Shutdown

(void) pgMe��hutdown (pg��globals_ptr me��globals);

Call this function once you are through using the
Allocation Manager. Be sure it is called after
pgShutdown.

NO��: This function is not necessary if you ��ll be
doing Exi��oShell() on Mac��tos�.

See section 2.5, HER��S Paige Shutdown.

25.17 ��scellaneous Memory Functions

Unuse & dispose

(void) UnuseAndDispose (�emory_ref ref);

UnuseAndDispose decrements the access counter in ref,
then disposes the allocation. This function does
exactly the same thing as:

UnuseMemory(ref);
DisposeMemory(ref);

Memory globals

(pg��globals_ptr) GetGlobalsFromRef (�emory_ref
ref);

GetGlobalsFromRef returns a pointer to pg��globals
located from an existing memory_ref. This function is
useful for situations where you do not have access to
the globals structure. Any valid, non-disposed
memory_ref, locked or unlocked, purged or not, can be
used for ref. For more information on getting
pg��globals_ptr see technical note, Get globals from
pg_ref, paige_rec_ptr, etc..

��nclude "pgTraps.h"
(�emory_ref) HandleToMemory (pg��globals
*me��globals, Handle h, pg_short_t rec_size);
(Handle) MemoryToHandle (�emory_ref ref);

HandleToMemory accepts Handle h and returns a
memory_ref for that Handle.

FUNC��ON RESU��: After this function is called, the
Handle is now "owned" by the Allocation Manager, which
is to say you should no longer access nor dispose that
Handle. Access to the Handle's contents must
thenceforth be made using the functions given above
(UseMemory, UseMemoryRecord, etc.).

The me��globals parameter must point to the same
structure as given to MemoryAlloc.

The rec_size must contain the record size for the new
memory_ref, which must be an even multiple of the
original Handle. If unknown, then make rec_size = 1.

It does not matter if Handle h is locked or unlocked,
but it should at least temporarily be unpurgeable.

MemoryToHandle performs the reverse: it returns a
Handle built from memory_ref ref. Again, once this
call is made, ref is no longer valid and must not be
given to any Allocation Manager functions.

NO��: The term Handle is typedefed from the ��ndows
HANDLE, so the ��o terms are synonymous.

NO��: These functions do not perform huge copies.
Rather, they convert Handles to memory_refs and v�ce
versa by appending some special information before and
after the data contents, or removing this appendage. So
it is generally safe to do HandleToMemory,
MemoryToHandle under fairly tight situations that could
not ��thstand the doubling of a Handle's size.

25.18 Debug Mode

There are ��o compiled versions of HER��S Paige
sof��are, one for "debug mode" and one or "non-debug"
or runt��e mode.

In debug mode, memory_refs are checked for validity,
including the verification of appropriate access
counters, each t��e they are given to one of the
functions listed above. While this significantly
reduces the speed of execution, it does aid
substantially in locating bugs that would other��se
crash your syste�.

For example, calling Se��emorySize for an allocation
that is currently "in use" (access counter nonzero)
could fail and/or crash your progra�. Under debug mode,
however, you would be warned ��mediately if an attempt
to change the size of an allocation was made on a
locked block.

Object Code Users (�acintosh)

There are ��o sets of Macintosh (or Power Mac) object
code libraries: one for "debug" and the other for "non-

debug." As a general rule, you should use the debug
versions to develop your application, then s��tch to
non-debug before release (non-debug runs much faster).

NO��: Object code for "debug" mode is not supported on
���dows. This is because ��ndows General Protection
Mode can be used instead and is generally superior.

Source Code Users

Debug/non-debug is controlled by the follo��ng ��fdef
in CPUDefs.h:

#define PG_DEBUG

If that #define exists, the source files are compiled
in "debug" mode.

To run HER��S Paige debug libraries, you must include
pgDebug.c in your project. When doing so, you can place
a source-level debugger break at the location shown
below; when the Allocation Manager detects a proble�,
the code ��ll break at this spot.

char pgSourceDebugBreak(�emory_ref offending_ref,
char *debug_str)
{

me��rec PG_FAR *bad��e��rec; �� This gets
coerced to exa��ne it

char *exa��ne;
}

/* ****** DEBUG BREAK - M��ORY ERROR! ****** */

exa��ne = debug_str; ��
<�� Place debugger break here!
bad��e��rec = (�e��rec PG_FAR*)
pgMemoryPtr(offending_ref);
pgFreePtr(offending_ref);

/* ****** DEBUG BREAK - M��ORY ERROR! ****** */

NO��: The error message string is a pascal string.

Debug Assert Messages

The debugger assert is s��ply a debugger break ��th one
of the follo��ng messages:

Out of memory — Block of requested size cannot be
allocated (or block cannot be resized). If virtual
memory has been enabled, this ��ll only happen if
the block is so huge there is insufficient,
contiguous memory available.

Purge file not open — Memory needs to be purged but
"scratch" file doesn't exist or is closed.

Attempt to resize locked memory — Allocation is
locked, yet a Se��emorySize has been attempted.

NIL memory_ref — memory_ref is a null pointer
and/or an address inside of it is null.

Bogus memory_ref address — An address in a
memory_ref is bad (�ould result in a bus error for
Mac).

Internal damage in memory_ref — memory_ref's
address OK but certain characteristics are ��ssing
(so it is assumed “damaged" or overwritten).

Overwrite error — last 1 of 4 bytes beyond the
logical size of a memory_ref has been overwritten.

Access counter invalid for operation — access
counter is illegal for given function. Examples:

Se��emorySize and access �� 0 (illegal);
UnuseMemory and access counter �� 0 (illegal);
DisposeMemory and access counter �� 0
(illegal).

Bogus memory_ref — memory_ref given is not a
memory_ref but some other address.

Operation on disposed memory_ref — memory_ref
given has been disposed.

Error in purging — An allocation was writing to a
scratch file and I/O error resulted (such as out of
space).

Error in un-purging — Read error occurred while
recovering a purged allocation from scratch file.

Attempt to access record out of range —
UseMemoryRecord asking for a record beyond the size
of the allocation.

Structure integrity failed — Structural damage has
occurred to the style_info or par_info run. For
example, a style run ��ght (incorrectly) reference
a style_info that does not exist.

25.19 Writing Your Own Purge
Function

The standard purge function is a built-in part of the
Allocation Manager that purges (disposes) memory that
is not being used to make room for new allocations. The
blocks to be purged are saved to a "temp" file so they
can be resurrected later when asked to be used by
HER��S Paige or by the application.

If necessary, you can replace the standard purge
function ��th one of your own. To do so, first declare
a function as follows:

PG_FN_PASCAL pg_error my_purge_proc (�emory_ref
ref_to_purge, pg��globals_ptr me��globals, short
verb);

In the pg��globals structure (same one passed to
MemoryAlloc), the purge field contains a pointer to
the purge function. What you need to do is place a
pointer to your purge function, as defined above, into
that field:

paige_rsrv.�e��globals.purge = my_purge_proc;

The paige_rsrv variable is the same structure given to
pgInit, and me��globals is the Allocation Manager
subset (same one given to MemoryAlloc).

When the Allocation Manager purges memory, it locates
memory refs that are purgeable and passes each of the�,
one at a t��e, to the purge function; additionally,
when a memory_ref needs to be reloaded (unpurged), the
purge function is called again to unpurge the data. The

standard purge function handles this by saving the
contents of the memory_ref to a temporary file, then
setting the ref's byte size to sizeof(�e��rec); then
when unpurging, the allocation is resized to the
original size and data is read from the temp file.

The temporary file reference used by the standard purge
function is stored in the purge_ref_con field in
pg��globals (see Memory globals under section 25.17).

In addition to purging and unpurging, the purge
function is also called to initialise "virtual memory"
and to completely dispose an allocation that is
currently purged.

Whether the purge function is getting called to purge,
unpurge, initialise or dispose an allocation depends on
the verb parameter, which ��ll be one of the follo��ng:

typedef enum
{

purge_init, �� Initialise VM
purge��emory, �� Purge the

reference
unpurge��emory, �� Unpurge the reference
dispose_purge �� Purged ref ��ll

be disposed
};

For each verb, the purge function must perform the
follo��ng:

purge_init — "Virtual Memory" must be set up. When
purge_init is the reason for the function call,
ref_to_purge ��ll be NULL. The standard function
initialises the temporary file (�hose file
reference ��ll already be contained in me��globals
> purge_ref_con).
purge��emory — The ref_to_purge memory must be
purged. The Allocation Manager ��ll only call ��th
purge��emory if the reference is not yet purged;
�.e., it won't try to purge the same reference
���ce. The standard purge function saves
ref_to_purge's data to the temporary file and sets
the physical allocation size to sizeof(�e��rec).
unpurge��emory — The ref_to_purge memory must be
unpurged. The Allocation Manager ��ll only call

��th unpurge��emory if the reference has been
purged; �.e., it won't try to unpurge the same
reference ���ce. The standard purge function resets
the physical size of ref_to_purge and loads the
data from the temporary file.
dispose_purge — The ref_to_purge is already purged
but is about to be disposed. T�e purge �u�ct�o�
does �ot d�spose t�e �e�ory; rather, it does
whatever is necessary kno��ng that the purged
allocation ��ll be disposed forever. The standard
purge function "deletes" the saved data on the temp
file, and does nothing else.

FUNC��ON RESU��: The purge function should return
NO_ERROR (zero) if all was successful; other��se it
should return the appropriate error code per
pgErrors.h.

Memory Globals

The follo��ng structure is used by the Allocation
Manager (and is also a subset of pg_globals):

struct pg��globals
{
short signature;
/* Used for checking/debugging */
pg_short_t debug_flags; /*
Debug mode, if any */
pg_handle master_handle; /*
HANDLE for master list (��ndows only) */
pg_handle spare_tire;
/* Used to free up some memory in tight situations
*/
master_list_ptr master_list; /* Contains
list of all active memory_refs */
size_t next��aster; /*
Next available space in master_list */
size_t total_unpurged; /*
Total # of bytes allocated not purged */
size_t max��emory;
/* Max��um memory (set by app) */
size_t purge_threshold; /*
Amount extra to purge */
void PG_FAR *machine_var; /*
Machine-specific generic ptr */
me��debug_proc debug_proc; /*

Called when a bug is detected */
purge_proc purge;
/* Called to purge/unpurge memory */
free��emory_proc free��emory; /* Called to
free up ��scellaneous memory */
long purge_ref_con; /*
Reference for purge proc */
memory_ref purge_info;
/* Machine-based purge information */
memory_ref freeme��info; /*
List of pg_ref(s) for cache feature (2.0) */
long next��e��id; /*
Used for unique ID's assigned to refs */
long current_id;
/* ID to use for MemoryAlloc's */
long active_id;
/* Which ID to suppress, if any, for purging */
long last��essage; /*
Last message in exception handling */
pg_fail_info_ptr top_fail_info; /* Current
exception in linked list */
void PG_FAR * last_ref; /*
Last reference - used by external failure

processing TRS/O��C */
pg_error_handler last_handler; /* Last app
handler before Paige */
pg_error last_error;
/* Last reported error */

��fdef
PG_DEBUG
memory_ref debug_check; /*
Used for special-case debugging */
memory_ref dispose_check; /*
Used for special-case debugging on DisposeMemory */
short debug_access; /*
Used ��th above field */

#endif
void PG_FAR *app_globals; /*
Ptr to globals for PAIGE, etc. */
long creator;
/* For Mac file I/O */
long fileType;
/* For Mac file I/O */
};

For more information on pg_globals, see section 3.8,
Changing Globals. For more information on error codes,
see chapter 39, Error Codes.

26 EXCEP��ON HANDLING

26.1 The TRY/CATCH Mechanism

HER��S Paige provides a fairly straightforward method
of detecting runt��e errors (such as disk I/O errors,
memory errors, etc.) ��thout the requirement of
checking every function result or excessive code.

This is accomplished by using a set of predefined
macros: PG��RY, PG_CATCH, and PG_ENDTRY.

Although this mechanism is patterned after exception
handling in C��, you do not need to be using C�� to
utilise HER��S Paige error detection features (nor are
any C�� "header" files or libraries required).

Anywhere in your application that calls an HER��S Paige
function that can fail for "legit��ate" reasons, such
as allocating memory or reading/writing files, you
s��ply bracket your code as follows:

PG��RY (�me��rsrv)
{

/* ��� make calls to HER��S Paige functions
here such as allocating memory, or pgNe�, or pgCopy,
etc -- anything that can abort from an error. */
}

PG_CATCH
{

/* ��� if any error causes HER��S Paige to
abort a function, this part of your code is
executed; other��se this part is not executed. Hence
you would do whatever is appropriate here such as an
error alert to user. */
}

PG_ENDTRY;
{

/* ��� code is executed here if no error;
also it is executed here if the code under PG_CATCH
does nothing to abort the program any further. */
}

The above example shows the s��plest form of error
detection: none of the code under PG��RY is necessarily
required to check for errors at all since anything
fatal ��thin HER��S Paige (such as out of memory or a
disk error) ��ll throw CPU execution into the first
line of code under PG_CATCH. This is done
automatically.

The parameter me��rsrv after PG��RY must be a pointer
to the global structure given to pgMe��tartup earlier
(see "Sof��are Startup" for information about
pgMe��tartup).

NO��: PG��RY, PG_CATCH, and PG_ENDTRY macros are
automatically available by including Paige.h (the
actual definitions for these exist in pgExceps.h which
is ��ncluded in Paige.h).

26.2 Last Error

If your code executes under PG_CATCH that means HER��S
Paige aborted something due to a fatal error. You can
learn what the error code was by exa��ning the memory
globals (same structure given to PG��RY) as follows:

me��rsrv.last_error;

26.3 Nested TRY/CATCH

PG��RY, PG_CATCH, and PG_ENDTRY can be "nested"
throughout your application, in as many places as
required. What literally occurs is that the CPU gets
forced to the PG_CATCH that corresponds to the most
recent PG��RY; then if the code under PG_CATCH decides
to abort that section of code, it can force an
additional exception using pgFailure (given belo�), in
which case the next most recent PG_CATCH (from some
other place in your progra�, if any) gets executed. In
short, TRY and CATCH can be effectively "daisy
chained" in this fashion so any fatal error can cycle
up through any level of nested subroutines - pall
��thout the need to even check for errors!

26.4 Refinements

There are many situations where your code ��ght need to
"force" an exception after detecting additional errors
while executing code be��een PG��RY and PG_CATCH.
There are also many situations where your PG_CATCH code
needs to abort the entire subroutine, returning control
to some other part of the progra�. The follo��ng
functions are available for this purpose:

(void) pgFailure (pg��globals_ptr globals, pg_error
error, long message);

This function forces unconditional execution to the
code under PG_CATCH that belongs to the most recent
PG��RY. For example, if you use pgFailure while
executing the code under PG��RY, then the first line
under PG_CATCH in that section ��ll get executed; if
you use pgFailure under PG_CATCH, then the first line
under PG_CATCH belonging to the previous PG��RY
(somewhere higher up in your progra�) gets executed.
You would most often use pgFailure when executing
PG_CATCH to completely abort an operation.

The globals parameter must be a pointer to pg��globals
(same structure given in pgMe��tartup). The error and
message parameters are stored in globals �� last_error
and globals �� last��essage, respectively, and can be
any value(s) appropriate.

(void) pgFailNIL (pg��globals_ptr globals, void
PG_FAR *allocation);

This function can be used to force an exception if
allocation parameter is a null pointer. The globals
parameter must be a pointer to pg��globals (same
structure given in pgMe��tartup).

What actually occurs when pgFailNIL is called is the
follo��ng:

if (!allocation)
pgFailure(globals, NO����ORY_ERR, 0);

��nclude "pgSetJmp.h" �� which is included in
Paige.h

(void) pgFailError(pg��globals_ptr globals, pg_error
error);

This function can be used to force an exception if
error parameter is non-zero. The globals parameter
must be a pointer to pg��globals (same structure given
in pgMe��tartup).

What actually occurs when pgFailError is called is the
follo��ng:

if (error)
pgFailure(globals, error, 0);

��nclude "pgSetJmp.h" �� which is included in
Paige.h

(void) pgFailError(pg��globals_ptr globals, pg_error
acceptable_error, pg_error actual_error);

This function can be used to force an exception if
actual_error parameter is non-zero and it does not
equal acceptable_error. The globals parameter must be
a pointer to pg��globals (same structure given in
pgMe��tartup).

A typical use of this function is to force an exception
for file I/O errors unless the error is nonfatal. For
example, there ��ght be some code that keeps reading a
data file until end-of-file error occurs. In such a
case, you would want to abort if an error was detected
other than end-of-file error.

What actually occurs when pgFailNotError is called is
the follo��ng:

if (error)
if (actual_error �� acceptable_error)

pgFailure(globals, actual_error, 0);

��nclude "pgSetJmp.h" �� which is included in
Paige.h

(void) pgFailBoolean(pg��globals_ptr pg��globals_p,
pg_boolean b);

This function can be used to force an exception if b is
TRUE. The globals parameter must be a pointer to
pg��globals (same structure given in pgMe��tartup).

What actually occurs when pgFailBoolean is called is
the follo��ng:

if (b)
pgFailure(globals, BOOLEAN_EXCEP��ON, 0);

26.5 Bridging to C�� Exceptions

If you are using C�� and its TRY/CATCH mechanis�, you
can "bridge" an HER��S Paige failure to the standard
C�� exception handling by calling "Failure" (defined in
C�� headers). Here's an example:

Code that follows PG_CATCH

Failure(�e��globals.last_error,
me��globals.last��essage);

Creating a memory_ref

Let's take a s��ple but common example of using this
method to detect insufficient memory when attempting to
create a memory_ref. Here's how it would look (the
me��globals variable is the same structure that you
gave to pgMe��tartup when you initialise HER��S Paige):

{
memory_ref SomeAllocation;
PG��RY(�me��globals)
{

SomeAllocation =
MemoryAlloc(�me��globals, 1, 100000, 0};

/* More code follows, but only gets
executed if above allocation was successful. */

}

/* If above code succeeded, PG_CATCH does
NOT get executed. */

PG_CATCH
{

/* If it gets here, your allocation
failed! */

DisposeFailedMemory(�me��globals);
CautionAlert(���) /* Alert

user that attempt failed or whatevs */
}
PG_ENDTRY;
/* ^^ Must be given to balance PG��RY

statement */

When you execute the above code, by virtue of making
the PG��RY statement, HER��S Paige now knows that any
failure to create memory should invoke the exception
handler and jump to your PG_CATCH statement. Hence, if
MemoryAlloc fails, the CPU is ��mediately forced to the
line that contains PG_CATCH. At that place in your code
you can do whatever to recover or alert the user or
raise your own exception, etc.

The above example is the s��plest of all cases since it
only creates one memory_ref, hence, there really is
nothing to "recover." It gets slightly more involved
when you create, say, multiple memory_refs and you need
to dispose the allocations that succeeded. One way to
handle this is by setting them all to NULL so you know
which ones succeeded in PG_CATCH:

{
memory_ref allocation1, allocation2,

allocation3;
allocation1 = allocation2 = allocation3 =

M���NULL;
/* ^^^ set all to zero ^^^ */

PG��RY(�me��globals)
{

allocation1 =
MemoryAlloc(�me��globals, 1, 100000, 0);

allocation2 =
MemoryAlloc(�me��globals, 1, 100000, 0);

allocation3 =
MemoryAlloc(�me��globals, 1, 100000, 0);

}
/* if ALL above code succeeded, PG_CATCH

does not get executed */

PG_CATCH
{
/* if it gets here, ONE of the allocations

failed! */
if (allocation1)

DisposeFailedMemory(allocation1);
if (allocation2)

DisposeFailedMemory(allocation2);
if (allocation3)

DisposeFailedMemory(allocation3);
}
{
PG_ENDTRY;
}

}

In the above example, PG_CATCH gets automatically
executed upon the first failure of the three
MemoryAllocs. At that t��e, we dispose only the
memory_refs that are non-NULL (�hich means they were
successfully created).

NO��: We call DisposeFailedMemory instead of
DisposeMemory. This is a special "dispose" that HER��S
Paige provides for this case. It disposes the
memory_ref regardless of its locked or "used" state so
it doesn't jump into the low-level debugger.

Own error checking

The previous examples illustrate where HER��S Paige
itself, by virtue of MemoryAlloc, automatically invokes
the exception handler. There ��ll be other cases,
however, when you want to cause a s���lar exception for
your own error checking (but you haven't called an
HER��S Paige function). One example of this would be
calling NewHandle and having it return NULL (this
indicating it failed). Here's how to do that:

{
Handle h;
PG��RY(�me��globals)
{

h = NewHandle(100000);
pgFailNIL(�me��globals, h);
/* Jump to PG_CATCH if h �� nil */

}

�� more code if above succeeds

PG_CATCH
{

/* if it gets here, NewHandle()
failed */

}

PG_ENDTRY;
}

In the above, we use pgFailNIL, which checks for h
being a null pointer and if so, throws an exception
(causing PG_CATCH ��mediately to execute).

There are other pgFailxxx functions to raise an
exception in other ways. Using pgFailure, for example
forces an exception unconditionally (see pgSetJmp.h to
see the various functions and/or the docs on this).

There is the possibility you ��ght need to recover from
a failed pgNew (also pgCopy would be same thing). You
do this the same way as in my second example of
creating allocations—except that, for a pg_ref, you
call a special error-recovery dispose:

{
pg_ref MyNewPG;
pg_ref = M���NULL;
PG��RY(�me��globals)
{

MyNewPG = pgNe�(��, ��);
}

/* If ALL above code succeeded, "PG_CATCH"
does NOT get executed. */

PG_CATCH
{

/* If it gets here, then HER��S
Paige did not succeed and raised an exception */

pgFailureDispose(�yNewPG);
}

PG_ENDTRY;
}

The function pgFailureDispose is called for situations
like the above when none or only part of the pg_ref may
have been created.

NO��: pgFailureDispose can accept a "null" pg_ref, so
if you initially set the pg_ref to M���NULL you can
pass it to pgFailureDispose safely.

��CH NO��: Get globals from pg_ref,
paige_rec_ptr, etc.

So I am buried deep ��thin a bunch of functions
and I need to do a PG��RY/PG_CATCH.

All I have is a pg_ref.

How do I get the globals I need for PG��RY?

The availability of "memory globals" ��ll generally
depend on the kind of program you are developing.

In a regular application, you generally keep memory
globals around as a static record that is accessible by
any module of the progra�. Hence, the "availability" of
globals is merely a matter of design, usually by
including the necessary application header file.
Example:

��Inside one of your application headers:
extern pg_globals pg��globals me��globals;

Hence, me��globals is available anywhere you include
the above header.

For certain circumstances where only a memory_ref (or a
pg_ref) is available, however, you can also get the

memory globals by calling GetGlobalsFromRef.

Suppose, for instance, all you had available is ref,
where ref is a memory ref (or a pg_ref). You can get a
copy of memory globals as follows:

pg��globals_ptr me��globals;
me��globals = GetGlobalsFromRef(ref);

Getting a pg��globals_ptr from a paige_rec_ptr:

pg��globals_ptr my_pg��globals = pgp �� globals ��
me��globals;
PG��RY (�y_pg��globals)
{

/* ��� */
}
PG_CATCH
{

/* ��� */
}
PG_ENDTRY
{

/* ��� */
}

27 IN��N��ONALLY ��SSING

Because of the workload involved, chapter 27
("Custo��sing HER��S Paige") is intentionally ��ssing.
The issue ��ll be rectified but for no�, users are
referred to chap27.pdf in this directory.

28 ��bedding Non-Text Characters

28.1 Inserting graphics & user items

DEFIN���ON: A non-text character is a graphic display
embedded into the text stream of an OpenPaige document,
such as a picture, box or special string (such as a
page number, footnote, etc.). It is not an ASCII byte
as such, but other��se looks and behaves like an
ordinary character. It can be clicked, deleted, cut,
copied, and pasted.

The purpose of this chapter is to explain the built-in,
high-level support for these special characters.

DISCLA���R

There are several undocumented references in pg��bed.h.
If anything in that header file is not explained in
this chapter, it is �ot supported. The purpose of these
definitions is for possible future enhancement and/or
custom development by DataPak Sof��are, Inc.

Description

OpenPaige provides a certain degree of built-in support
for graphic characters. For the Macintosh version,
PicHandles (pictures) can be inserted into the text
stream ��th practically no support required from your
application. For the ��ndows version, meta files can be
inserted in the same way.

For other graphic types and/or "user items" (custom
characters), OpenPaige supports a variety of user-
defined non-text character insertions; your application
can then handle the display and other rendering through
a single callback function.

All the functions documented in this chapter are
prototyped in pg��bed.h. You therefore need to include
this header file to use the structures, functions and
callbacks.

28.2 The embed_ref

The first step to embedding a non-text character is to
create an embed_ref:

embed_ref pgNew��bedRef (pg��globals_ptr
me��globals, long ite��type, void PG_FAR *ite��data,
long modifier, long flags, pg_fixed, vert_pos, long
user_refcon, pg_boolean keep_around)

This function returns a special memory_ref that can be
subsequently inserted into a pg_ref as a "character".
Once you have created an embed_ref, call
pgInsert��bedRef() belo�.

me��globals — must be a pointer to your memory
globals (same structure that was also given to
pgMe��tartup and pgInit).

ite��type — indicates the kind of object you want
to create. This value can be any value shown in
"��bed_Ref Types”.

ite��data, modifiers — What you provide in
ite��data and modifiers depends on the ite��type;
these are also described in "��bed Reference
Types."

flags — should be set to zero (��th some unusual
exceptions - "Special Cases").

vert_pos — Its purpose is to indicate a descent
value for the object you ��ll be inserting. By
desce�t is meant the amount the item should be
offset vertically below the baseline. If vert_pos
is positive, it is considered to be a percent of
the item's total height. If vert_pos is negative,
it is considered to be a pixel value. Carefully
note that in both cases, vert_pos is a Fixed value
— the high-order word is the whole part and the
low-order word is the fraction.

For example, if vert_pos is 0x000A0000, the
embed_ref ��ll be offset 10% of its total height
from the text baseline. If vert_pos is 0xFFFEFFFF
(negative 0x00020000), the item ��ll be offset 2
pixels below the text baseline, etc.

The follo��ng illustrations show a typical
embed_ref's descent values for different vert_pos

values:

The above shows the result of an embed_ref ��th
vert_pos = 0 (no descent from baseline).

The above shows the result of an embed_ref ��th
vert_pos = 50.00 (descent is 50% of height).

The above shows the result of an embed_ref ��th
vert_pos = -3 (descent is 3 pixels)

user_refcon — is saved inside the embed_ref
itself, and can be anything.

keep_around — indicates whether or not the
embed_ref can be automatically disposed once it is
no longer being used ��thin any existing pg_ref. If
this value is FALSE then OpenPaige is authorized to
dispose of it once it is no longer being used by
any pg_ref; a TRUE value tells OpenPaige it must
never dispose it even if no pg_ref contains the
embed_ref.

To understand the full meaning of keep_around, the
deceloper should realise that an embed_ref can be
"shared" by multiple positions in a document, and
even be��een different documents. For example, if
the user performs multiple copy/paste operations on
a single embed_ref, OpenPaige won't actually
duplicate the embed_ref; rather, it s��ply creates
multiple pointers to its data.

However, once the last remaining shared copy of the
reference is deleted, OpenPaige ��ll dispose the
memory_ref (if keep_around = TRUE). Normally, this is
what you would want.

NO��: If keep_around is FALSE you should never dispose
the embed_ref (OpenPaige ��ll dispose of it at the
appropriate t��e). If keep_around is TRUE then you need
to eventually dispose the reference ��th
pgDispose��bedRef().

28.3 Inserting the embed_ref

pg_boolean pgInsert��bedRef (pg_ref pg, embed_ref
ref, long position, short stylesheet_option,
embed_callback callback, long callback_refcon, short
draw��ode);

This function inserts an embed_ref as a "character"
into pg at the specified text location. The position
parameter indicates the text offset (relative to zero)
to insert the embed_ref; the position parameter can
also be CURREN��POS���ON which causes the insertion to
occur at the current insertion point.

stylesheet_option — is an optional stylesheet ID
that gets automatically applied to the embed_ref
"character". If you merely want to use whatever
style applies to the text position, pass zero for
stylesheet_option, other��se you need to create a
new stylesheet and provide that stylesheet ID.

callback — is a pointer to a function (in your
application) that ��ll be called for various
occurrences; the purpose of this callback is to
handle custom characters and/or to modify the
default behavior of standard embed_refs. However,
if you want OpenPaige to handle the embed_ref in
the default way, pass NULL for callback.

NO��: Only certain embed_ref types are supported
��th a "default behaviour", and therefore only
those types ��ll work correctly if you pass NULL
for callback; see section 28.4, ��bed Re� Types.
belo�.

callback_refcon — value can be anything you want;
this same value ��ll be given to your callback
function. If you have not supplied a callback
function (callback = NULL), this parameter does not
matter.

draw��ode — indicates whether or not to redraw the
text after the embed_ref is inserted; the value you
pass for this parameter is identical to all other
OpenPaige functions that accept a draw��ode.

Notes and Cautions

Value callback_refcon given to pgInsert��bedRef is
�ot to be confused ��th user_refcon given to
pgNew��bedRef; they are entirely separate. The
user_refcon given to pgNew��bedRef is stored
��thin the embed_ref itself, and the same
embed_ref can exist as multiple copies throughout a
document; the callback_refcon is specific to the
insertion itself and can be different for all
occurrences of the embed_ref. The callback_refcon
is stored in the style_info that is applied to the
insertion, and is also passed to your callback
function (if one exists).

The user_refcon ��ll a��ays be whatever value you
passed to pgInsert��bedRef() in the
callback_refcon parameter except for
��BED_READ_DATA and ��BED��R���_DATA, in which
case the user_refcon ��ll be the original
user_refcon value given to pgNew��bedRef().

Do not insert the same embed_ref more than once
unless you have created it ��th keep_around = TRUE.
Other��se, OpenPaige can dispose it prematurely and
your program ��ll crash. Once it has been inserted,
however, it is OK to copy and paste that character
to as many documents as memory per��ts.

Once the embed_ref has been inserted, OpenPaige
"owns" its memory, i.e. you �ust �ot dispose of it
as long as it exists in any pg_ref (and, if you
passed FALSE for keep_around in pgNew��bedRef(),
you �ust �ot dispose of it at all, at any t��e).

The Style Sheet Option

Any embed_ref has the option to alter the style and/or
font of the text it applies to.

For example, a string-type embed_ref
(embed_alternate_char) ��ll normally assume the style
and font of the text where it was embedded; however, by
passing a non-zero stylesheet_id number in
stylesheet_option in pgInsert��bedRef or
pgSet��bedRef, the style or font can be overridden.

A stylesheet_id is obtained by first creating a new
style_info record and adding it to the pg_ref as a new
style sheet (see chapter 31, "Style Sheets"). The
stylesheet_id is then given to the stylesheet_option
parameter, in which case the text for which the
embed_ref applies ��ll assume that style.

However, a style sheet applied to an embed_ref works
slightly differently than normal styles: only the non-
zero items in the style_info record of the stylesheet
are applied.

For example, let us suppose that a new style sheet is
created ��th every field in its style_info record set
to zero except for the italic attribute. If this style
sheet is applied to an embed_ref, the text is forced to
italic but retains all other attributes (same point
size as before, same font, etc.).

The follo��ng is an example of applying italic to an
embed_ref; note that the embed_ref text retains all
style and font characteristics except that it is
italicised:

style_info ne��sheet;
short stylesheet_id;

pgFillBlock(�ne��sheet, sizeof(style_info), 0); ��
Fill ��th all zeros
style_info.styles[italic_var] = -1;
�� Set for italic
stylesheet_id = pgNe��tyle(pg, &ne��sheet, NULL);

�� Now include in "stylesheet_option":

pgSet��bedRef(pg, ref, NULL, stylesheet_id, 0,
best��ay);

If you want to change only the font in the embed_ref
text, use the same example as above except o��t
changing the italic attribute and pass a font_info
record instead of NULL for pgNe��tyle.

28.4 embed_ref Types

The follo��ng table describes each possible embed_ref
data type and what you should pass in the ite��data and
modifier parameters for pgNew��bedRef(). The Support
column indicates which OpenPaige platform supports the
data type. All the items listed are supported to some
extent; �.e., none of them require a callback function
to render a default behavior.

NO��: I� t�e data type �s �ot ��sted, t�ere �s �o
curre�t Ope�Pa�ge support �or t�e type. (You can, of
course, support your own using the callback function.)

Table 5. embed_ref data types

Data Type Support
*ite��data
parameter

modifierNote(s)

embed_rectangle
all

platforms
rectangle_ptr

pen size
(pixels)

embed_oval
all

platforms
rectangle_ptr

pen size
(pixels)

embed_roundrectangle
all

platforms
rectangle_ptr

round
corner +
pen size

1

embed_control
Macintosh

only
ControlHandle not used 2

embed_polygon
all

platforms
memory_ref of

polygon
pen size
(pixels)

3

embed��ac_pict
Macintosh

only
PicHandle not used

embed��ac_���pict
Macintosh

only
memory_ref of
Pict data

not used 7

embed��eta_file
��ndows
only

metafile_ptr not used 4

embed_alternate_char
all

platforms
cstring (any

size)
not used 5

embed_user_data
all

platforms
(l���ted)

pointer to
data

data
size
(bytes)

6

Data Type Support
*ite��data
parameter

modifierNote(s)

embed_dyna��c_string
all

platforms
cstring (any

size)
max size
(bytes)

embed_user_box
all

platforms
(l���ted)

rectangle_ptr
pen size
(pixels)

1

-

embed_roundrectangle — the low-order word of
modifier is the pen size; the high-order word is
the "rounded corner" value, e.g.
FrameRoundRect(rect, value, value).

embed_user_box — The default behavior for
embed_user_box is identical to embed_rectangle. To
modify the default behaviour, use the callback
function.

ControlHandle — is detached from any ��ndow before
it gets inserted.

data — is a memory_ref that �ust contain the
follo��ng structure:

typedef struct
{

short ��dth; ��
��dth of polygon in pixels

short height; ��
Height of polygon in pixels

short rsrv;
�� (Here for future enhancement)

short nu��points; ��
Number of points that follow

co_ordinate points[1]; �� One or more
points for the dra��ng
}
pg_poly_rec, PG_FAR *pg_poly_ptr;

��dth and height — members should contain the
��dth and height of the bounding area of the
polygon. The nu��points member should contain the
number of connecting points in the points[] member
array.

points — are represented by a series of
co_ordinate pairs; the first pair is a line, the
second pair is another line, etc.

1. The points array must therefore be in PAIRS.
2. A ��ndows meta file must be represented by the

follo��ng structure (pointed to by the
ite��data parameter);

-

struct metafile_struct
{

long metafile; �� Metafile data
(HANDLE if ��ndows)

long mapping��ode; �� Mapping mode
(��ndows only)

short x_ext; �� Original X-extent
short y_ext; �� Original Y-extent
rectangle bounds; �� Source bounding

rect
};

-

metafile — The meta file HANDLE should be in the
metafile member; the mapping mode for the meta file
should be in mapping��ode. For most meta files the
mapping mode is M��ANISOTROPIC.

x_ext and y_ext — Members should contain the
mapping mode-specific X and Y extents,
respectively. You can also set these to zero (in
which case the default ��dth and height of the meta
file ��ll be used, taken from the bounds member).
Most often, the mapping��ode and the x and y
extents are taken from clipboard information.

bounds — Member defines the meta file's d��ensions
in screen coördinates.

The metafile HANDLE should be in the metafile
member; the bounds member must define the bounding
area of the metafile (the enclosing rectangle as
the metafile was recorded).

embed_alternate_char and embed_dyna��c_string —
draw a whole string to represent a single
"character".

The embed_dyna��c_string, however, can be
dyna��cally altered (changed or "swapped" ��th a
different string) in the callback function for
display and character measuring purposes.

embed_alternate_char and embed_dyna��c_string —
are treated as a single character and ��ll
therefore not wrap or word break in the ��ddle.

embed_user_data — the item is considered custom
(generally handled by your callback function), but
OpenPaige ��ll save and retrieve your data
automatically when saving to files. The data is
assumed to be a contiguous byte stream in
*ite��data.

ite��data for embed��ac_���pict — must be a
memory_ref containing the data from a PicHandle.
This type behaves exactly the same as
embed��ac_pict except that the memory_ref provides
virtual memory to the picture.

28.5 The Callback Function

Any custom user type embed_ref, embed_refs that are
not supported, or items that require modification(s) to
the default behaviour ��ll require a callback function.
The callback function is a pointer to some code (that
you write) that gets called for a number of
occurrences:

PG_PASCAL (long) ��bedCallback (paige_rec_ptr pg,
pg_embed_ptr embed_ptr, long embed_type, short
command, long user_refcon, long para��, long
param2);

Each embed_ref you have inserted can have its own
callback function (or they can all share the same
callback if you so choose). The callback is set by
passing the function pointer to the "callback"
parameter in pgInsert��bedRef().

NO��: For ���dows 3.1, you need to set a callback
function that has been created ��th MakeProcInstance().

Upon entry, pg is the OpenPaige record structure that
owns the embed_ref; the embed_ptr parameter is a
pointer to the embed_ref record structure ���ra, and
embed_type is the data type (same one you gave to
pgNew��bedRef() when it was initially created).

command — indicates why the function is being
called, and para��/param2 ��ll contain different
values depending on what value is in command (see
"Command Messages” ���ra).
user_refcon — ��ll be whatever value you passed to
pgInsert��bedRef() in the callback_refcon
parameter except for ��BED_READ_DATA and
��BED��R���_DATA, in which case the user_refcon
��ll be the original user_refcon value given to
pgNew��bedRef().

Command Messages

When the callback function is called, the value in
command ��ll be one of the values belo�. Depending on
the command, para�� and param2 contain additional
data. In each case, the embed_ptr ��ll point to the
embed_ref structure (see "The ��bed Record").

��BED_IN�� — occurs during a pgReadDoc() function
(file read). The purpose of this command is to
initialize an embed_ref that has been read from a
file (typically, to set a callback function
specific to the associated text style). See
pgInit��bedProcs regarding the first pgReadDoc
callback function.

Upon entry, para�� indicates the number of t��es
��BED_IN�� has been sent to the callback function
during pgReadDoc for this particular embed_ref.
(Since the same embed_ref can be shared by many
places in the text, your initialisation code ��ght
want to know this information so the embed_ref data
is initialised only once). On the first callback
for this embed_ref, para�� is zero.

The param2 ��ll be a style_info pointer that is
associated to the embed_ref.

The callback function result is ignored.

��BED_DRAW — occurs when the embed_ref should be
drawn.

para�� — Upon entry, this is a rectangle_ptr (an
OpenPaige rectangle) that defines the exact dra��ng
bounds of the embedded item (�hich includes
scrolled position and scaling).

param2 — is a dra��points_ptr containing
additional information for dra��ng (see
dra��points_ptr in OpenPaige manual and/or in
Paige.h).

The callback function result is ignored.

NO��: On ���dows, the device context that you
should draw to can be obtained as follows:

HDC hdc;
hdc = (HDC)pg �� globals ��
current_port.�achine_ref;

Do not assume that OpenPaige is dra��ng to the
current ��ndow (it can be dra��ng to a bi��ap DC or
a printer DC, etc.). When the callback is called,
the above code is guara�teed to return a valid
device context to use for dra��ng.

NO��: On Mac��tos�, the GrafPort you should draw to
is set as the current port before the callback is
called. Do not assume that dra��ng ��ll occur to
the pg_ref ��ndow (it can occur to an offscreen
bi��ap port).

��BED���ASURE — occurs when OpenPaige wants to know
the character ��dth(s) of the embedded ite�.

Upon entry, para�� is a pg_embed��easure_ptr and
param2 is not used. (See “The Measure Record”).

NO��: This callback is only used to obtain the
object's ��dth. Its height must be initialized
either before inserting the embed_ref or in
response to ��BED_V��ASURE.

Before returning from this function, you should set
the embed_ptr �� ��dth to the embed_ref's ��dth,
in pixels.

NO��: OpenPaige ��ll deter��ne the ��dth
automatically for embed types that are fully
supported (requiring no callback).

The function result from the callback function is
ignored.

��BED_V��ASURE — occurs when OpenPaige wants to
know the height of the embedded ite�.

Upon entry, para�� is the style_info_ptr that
"owns" the embed_ref and param2 is not used.

Before returning from this function you should set
the embed_ptr �� height to the embed_ref's height,
in pixels.

NO��: OpenPaige ��ll deter��ne the height
automatically for embed types that are fully
supported (requiring no callback).

The function result from the callback function is
ignored.

��BED_��AP — occurs (only) when the item type is
embed_dyna��c_str. The callback function is used
to "swap out" (substitute) a string of bytes ��th
something else. For example, this type of embed_ref
can be used to indicate a date or t��e, page
number, or footnote, all of which ��ght change
dyna��cally.

Upon entry, para�� is a pointer to the existing
string (or empty buffer), and param2 is a long
value indicating the max��um number of bytes that
can be put into the buffer. The job of the callback
function, in this case, is to fill the buffer
pointed to by para��.

The function result of this callback must be the
number of bytes placed in *para�� (i.e., the string
length).

��BED_CURSOR - occurs when the mouse is on top of
the embed_ref. The purpose of the callback is to
let your application change the cursor, if desired.

NO��: This callback ��ll never occur unless you
call pgPtIn��bed().

Upon entry, para�� ��ll be a co_ordinate_ptr for
the mouse point, and param2 is a rectangle_ptr to
the enclosing bounds of the embed_ref.

The callback function result is ignored.

��BED��OUSEDOWN — occurs during a pgDragSelect()
��th mouse_down verb, when an embed_ref has been
clicked.

Upon entry, para�� is a pointer to a
pg_embed_click record ��th additional info (see
"Click Record" ���ra).

The function result from the callback should be any
non-zero value if you want to continue tracking the
embed_ref like a control button, other��se return
zero. (By tracking like a control button is meant
that OpenPaige ��ll not try to drag-select
surrounding characters, rather subsequent mouse
movements ��ll be passed to your callback function
��th ��BED��OUS��OVE and ��BED��OUSEUP commands.

CAU��ON: To achieve a "push-button control" effect,
mouse-click behaviour may not appear to work
correctly unless you include ��BED_CONTROL_FLAG in
the flags parameter for pgNew��bedRef(). See
"Acting Like a Control" in this chapter.

��BED��OUS��OVE — occurs during a pgDragSelect()
��th mouse��ove given as the verb, if you returned
non-zero from the previous callback for
��BED��OUSEDOWN. The parameters are identical to
��BED��OUSEDOWN.

CAU��ON: To achieve a "push-button control" effect,
mouse-click behavior may not appear to work
correctly unless you include ��BED_CONTROL_FLAG in
the flags parameter for pgNew��bedRef(). See
"Acting Like a Control".

��BED��OUSEUP — occurs during a pgDragSelect()
��th mouse_up given as the verb, if you returned
non-zero from the previous callback for
��BED��OUS��OVE.

The parameters are identical to ��BED��OUSEDOWN.

��BED_DOUBLECLICK — occurs during a pgDragSelect()
��th mouse_down and modifier containing
WORD��OD_B�� (“double click"). The parameters are
identical to the callback for ��BED��OUSEDOWN.

��BED_DE��ROY — occurs when the embed_ref is about
to be disposed. Upon entry, para�� and param2 are
not used. The function result is ignored.

NO��: You ��ll not receive this message if you
dispose your own embed_ref (e.g., made a call to
pg��bedDispose()). The only t��e you ��ll receive
this callback command is when OpenPaige disposes
the embed_ref; this happens when the last
occurrence an embed_ref has been deleted (and you
gave FALSE for keep_around when the embed_ref was
created).

CAU��ONS:

1. If you have created your own data and have
placed it in embed_ptr �� data, you must first
dispose it (if appropriate) then set that
member to NULL. However, do not dispose the
data if you gave that data to ite��data and
the data type is embed_user_data.

2. If the embed_ref data is not supported (i.e.
fully custo�), do �ot call the default
callback function when command is
��BED_DE��ROY.

3. Do not dispose the embed_ref itself. You
should only dispose memory structures that you
created.

��BED_COPY — Occurs when a style_info containing
an embed_ref is duplicated.

This callback only occurs for embed_refs that
contain NO��SHARED_FLAG (see “Special Cases”).

Upon entry, para�� and param2 are not used. The
intended purpose of ��BED_COPY is to duplicate any
memory structures you ��ght have stored in the
embed_ref.

��BED��R���_DATA — Occurs when an embed_ref is
saved during pgSaveDoc().

When OpenPaige saves an embed_ref to a file, all
the "default" information is saved before this
command is given to your callback. The intended
purpose of ��BED��R���_DATA is for you to prepare
any additional data that needs to be written to the
file; this same data ��ll then be retrieved when
the file is read and issued to your callback as
��BED_READ_DATA.

Essentially, when you get the ��BED��R���_DATA
command, you don't need to do anything unless there
is extra data you have stored in the embed_ref that
OpenPaige won't know about; all the other embed_ref
contents are saved other��se.

Upon entry, para�� is a memory_ref of zero byte
size, and param2 is not used. To save any
additional data associated to the embed_ref, insert
the bytes into this memory_ref. When the function
returns, OpenPaige ��ll write Ge��emorySize(para��)
bytes to the file; later when the file is opened,
these same bytes ��ll be read from the file and
given to your callback ��th ��BED_READ_DATA as the
command.

When the callback returns, if the memory size of
(�emory_ref) para�� is zero, no extra data is
saved.

The function result from the callback is ignored.

NO��: The ��BED��R���_DATA callback ��ll only occur
once for each embed_ref. In other words, if
multiple "shared" copies of the embed_ref exist in
the document, you ��ll only be asked to save extra
data once.

��BED_READ_DATA — Occurs when an embed_ref is read
from a file during pgReadDoc(). This command ��ll
a��ays get sent for every embed_ref that is read
even if you saved no extra data (from
��BED��R���_DATA).

Upon entry, para�� is a pointer to the same data
bytes, if any, that you saved when the command was
��BED��R���_DATA, and param2 is the byte count.

The function result from this callback is ignored.

NO��: The ��BED_READ_DATA callback ��ll only occur
once for each embed_ref. In other words, if
multiple "shared" copies of the embed_ref exist in
the document, you ��ll only be asked to process the
data once.

28.6 Default Callback

You should a��ays call the default function,
pgDefault��bedCallback, from your callback code if you
do not handle the command (some exceptions—see caution
���ra).

For example, you ��ght create a callback function only
for the purpose of changing the cursor when the mouse
is over the embed_ref. In this case, you would not want
to handle any other command; rather, you want the
default handling. To do so, make a call to
pgDefault��bedCallback().

pascal long MyCallback (paige_rec_ptr pg,
pg_embed_ptr embed_ptr, long embed_type, short
command, long callback_refcon, long para��, long
param2);
{

if (i_dont��ant_to_handle)
return pgDefault��bedCallback(pg,

embed_ptr, embed_type, command, callback_refcon,
para��, param2);

�� else handle the command
}

CAU��ON: Never call pgDefault��bedCallback() for
��BED_DE��ROY if you have placed your own data in
embed_ptr �� data. If you have not directly altered the
data field in any way, it is OK to call the default.

28.7 Acting Like a Control

In many cases, user-defined embed_refs need to act like
a "control". For example, once the user clicks in the
embed_ref, the mouse needs to be "tracked" as if the
embed_ref were a push-button control.

To make your embedded item behave this way, include the
follo��ng value in the flags parameter for
pgNew��bedRef():

#define ��BED_CONTROL_FLAG 0x00100000

�� Acts like a control

Creating embed_ref that acts like a "control"

/* This sample was taken from the Mac demo but can
apply to ANY embed_ref inserted for any platform: */

static void insert_embedded_pict(doc_rec *doc,
PicHandle picture)
{

embed_ref ref;

ref = pgNew��bedRef(�me��globals,
embed��ac_pict, (void*) picture, 0,
��BED_CONTROL_FLAG, 0, 0, FALSE);

pgInsert��bedRef(doc �� pg, ref,
CURREN��POS���ON, 0, NULL, 0, best��ay);
}

28.8 The ��bed Record

struct pg_embed_rec {
short version;

�� Version of embedded
short reserved;

�� reserved
long type;

�� Type of item embedded
long ��dth;

�� Dra��ng ��dth, in pixels
long

��n��um���dth; �� ��n��um ��dth
long height;

�� Dra��ng height, in pixels
long descent;

�� Distance bottom is below text line bottom
long dra��flags;

�� Dra��ng attributes (see table belo�)

long modifier;
�� Extra data for certain objects

long empty���dth;
�� ��dth of item when empty (applies to dyna��c
types).

long
alignment_flags; �� Alignment (subrefs only)

short top_extra;
�� Extra "whitespace" at the top

short bot_extra;
�� Extra "whitespace" at the bottom

short left_extra;
�� Extra "whitespace" at the left edge

short right_extra;
�� Extra "whitespace" at the right edge

void PG_FAR *data;
�� The item's data, if appropriate

memory_ref
embed_represent; �� Optional embed that
represents unsupported type

memory_ref
rtf_text_data; �� Original preamble text
from unsupported R�� ��port

union
{

pg_pic_embed pict_data;
�� Special picture data

pg_horiz_line line_info;
�� Special line data

pg_date date_info;
�� Date info

pg_t��e t��e_info;
�� T��e info

pg_char
alt_data[A���SIZE + BO��HEADER]; �� Alternate
data (for A���SIZE or less chars)

pg_char
book_data[BOOKMARK_SIZE];�� Bookmark data

} uu;
long border_info;

�� Border control (revised for 3.01)
long

border_color; �� The border color
long shading;

�� Background color shading
style_info_ptr style;

�� The style associated to this item
long user_refcon;

�� What app put ��th this embed
long user_data;

�� App can also use this field
long

style_refcon; �� Refcon saved in styles
long

lo��evel_index; �� Used by low level
functions

long used_ctr;
�� Count of shared access (�aintained internally)
};

The above structure is what all embed_refs look like
internally. Most of the fields are maintained by
OpenPaige and you must neither alter them nor assume
they are valid at any t��e, except as further
elucidated.

The follo��ng fields can be altered (and in some cases
need to be initialised) by your application:

��dth, height — Define the ��dth and height of the
object. The ��dth member gets set in the callback
function when the command is ��BED���ASURE; if the
item type is unsupported or custo�, the height
member must be initialised before inserting the
embed_ref.

��n��um���dth — Define the ��n��um ��dth (smallest
size) allowed for the embed_ref. Your application
needs to set this; other��se, it is zero.

descent — Defines the distance the object should
draw below the text baseline. You may alter this
value for a descent other than the default.

top_extra through right_extra — Define optional
extra white space on the top, left, bottom and
right sides of the object. The default for each of
these members is zero; if you want something else,
you should modify them before inserting the
embed_ref.

data - You may place whatever data your application
requires into this member. However, please observe
the follo��ng cautions:

1. Do NOT alter the data field directly for
embed_user_data type or any of the supported
types listed above.

2. If you place anything directly in the data
member, do not call the default callback
function when the command is ��BED_DE��ROY.

3. You must dispose your own data, if appropriate.
Letting OpenPaige handle it as a default can
result in a crash.

28.9 The Measure Record

typedef struct

{
style��alk_ptr walker;

�� Style information
pg_char_ptr text;

�� "Text" pointer
long

text_size; �� "Text" size, in bytes
pg_short_t slop;

�� Extra amount for full-justify
long PG_FAR *positions;

�� ��dth locations of "text" bytes
short PG_FAR *types;

�� Character types
short

scale_verb; �� Whether or not to scale
results

short
measure_verb; �� Measurement verb

long
current_offset; �� Current offset to measure

short
call_order; �� The call order
};

pg_embed��easure, PG_FAR *pg_embed��easure_ptr;

The measure record is passed as a pointer in para�� for
��BED���ASURE commands. Usually, you won't need to use
any of these values, but they are listed here for the
sake of clarity.

28.10 The Click Record

typedef struct
{

t_select_ptr first_select; �� Start of
selection

t_select_ptr last_select; �� End of
selection

co_ordinate point; ��
Mouse point

rectangle bounds; ��
Frame around the item

short modifiers; ��
Modifiers from pgDragSelect
}
pg_embed_click, PG_FAR *pg_embed_click_ptr;

A pointer to the above structure is provided in para��
for ��BED��OUSEDOWN, ��BED��OUS��OVE, ��BED��OUSEUP,
and ��BED_DOUBLECLICK commands.

The first_select and last_select members represent the
current beginning and ending selection point(s) of the
drag-select. (For ��BED��OUSEDOWN these are typically
the same). The point and modifiers members ��ll
contain the co_ordinate value and modifiers given to
pgDragSelect(), respectively. The bounds member ��ll
contain the WYS��YG bounding rectangle of the embed_ref
that is being clicked.

28.11 Special Cases

The flags parameter for pgNew��bedRef has been briefly
mentioned earlier. Normally, the value for flags should
be zero. There are ��o possible bit settings you can
provide for this parameter for specific situations, as
follows:

NO��SHARED_FLAG — If this bit is set, the
embed_ref's data is a��ays duplicated for any
copy/paste operation. Normally, when an embed_ref
is copied in the text strea�, its contents are not
actually copied; rather, only a pointer to its
reference is copied. In essence, only one "real"
embed_ref exists in the document even though there
could be many occurrences of the reference
throughout the text strea�.

However, this may be undesirable in situations
where copied embed_ref(s) must be unique (as
opposed to pointer "clones" of the original). If
this is the case, set NO��SHARED_FLAG.

��BED_CONTROL_FLAG — If this bit is set, the
embed_ref responds like a control (such as a
button). Other��se, the embed_ref acts like a
character. Note that the only significant
difference be��een a co�tro� and a c�aracter is the
way OpenPaige highlights the embed_ref when it is
clicked. As a "control", the entire embed_ref is
selected from a single click.

NO_FORCED_IDENT��Y — If this bit is set, when the
embed_ref is inserted, OpenPaige scans the document
for any embed_ref that matches its type, its ��dth
and height, and its user_refcon value. If such a
match is found, the (ne�) embed_ref is discarded
and the matching (older) embed_ref is used in its
place.

The purpose of NO_FORCED_IDENT��Y is to ��n���se
the amount of memory used by repeated insertions of
the same embed_ref type.

For example, suppose your application is designed
to insert a mathematical symbol (that can't
other��se be represented by a text character). To
achieve this, an embed_ref is created to draw the
symbol and it is inserted in many different places.
Normally (��thout NO_FORCED_IDENT��Y set),
OpenPaige ��ll create a unique style_info record
and embed_ref for every insertion. If
NO_FORCED_IDENT��Y is set, however, only one record
of this symbol would exist even though it may be
inserted and display in many different text
positions.

28.12 ��ps and Tricks

For all user items and custom or non-supported
embed_refs, you must initialise at least the height of
the embed_ref before you insert it. Other��se,
OpenPaige has no idea how tall the object is (but it
��ll get the object's ��dth from the callback
function). To initialise the height, do the follo��ng:

pg_embed_ptr embedPtr;
embedPtr = UseMemory(ref); �� where "ref" is the
ne��y created embed_ref
embedPtr �� height = HeightO��yItem;
UnuseMemory(ref);

NO��: For supported types that require no special
callback function, you do not need to initialise the
height - OpenPaige initialises it for you. You would
only need to change the height if you wanted something
other than the default.

If you need to create a custom embed_ref that requires
a block of data larger than a long word, the
recommended choice is to use embed_user_data because
OpenPaige ��ll at least store the data, present a
pointer to it for your callback, and save/read the data
for files. This ��n��al support assumes that nothing in
your data stream needs to be de-referenced, �.e., if
you have pointers inside of pointers, OpenPaige has no
way of kno��ng how to save the�.

To create an embed_ref of type embed_user_data, pass a
pointer to the data in ite��data and the byte count in
modifier; OpenPaige ��ll then make a copy of the data
(so you can then dispose the pointer, etc.).

CAU��ON: If you let OpenPaige store the data, you
should neither alter nor dispose it. Let the default
callback function handle the dispose (see "The Callback
Function”).

For all embed_refs (both supported items and
custom/user items), OpenPaige normally keeps only one
embed_ref around and creates pointers to the original
when the text is copied/pasted. If this default
behavior is unworkable for any particular feature, pass
NO��SHARED_FLAG for the flags field in pgNew��bedRef()
(see “Special Cases”).

28.13 Applying to Existing Text

In certain cases, you ��ght want to apply an embed_ref
to existing characters (as a "style") as opposed to
inserting a new "character" by itself. One example of
this would be to support hypertext links that apply to

existing key words in the document; for such a feature,
you ��ll probably want to connect an embed_ref to an
existing group of characters instead of inserting a new
one. If this is the case, you should use the follo��ng
function instead of pgInsert��bedRef:

void pgSet��bedRef (pg_ref pg, embed_ref ref,
select_pair_ptr selection, short stylesheet_option,
embed_callback callback, long callback_refcon, short
draw��ode);

This function's parameters are identical to
pgInsert��bedRef(), except the embed_ref is applied to
existing text as a style. Hence, the selection
parameter can be a pointer to a range of characters, or
NULL if you want to apply the reference to the current
text selection.

NO��: Relying on the default behaviour of the embed_ref
in this case can render the text "invisible". This is
because the text ��thin the specified selection becomes
literally a custom style and the standard text dra��ng
function ��thin OpenPaige ��ll no longer get called for
those characters.

You can handle this by setting a callback function that
responds to ��BED_DRAW, at which t��e you can call the
standard text dra��ng function (see "The Callback
Function").

28.14 Non-sharing ��beds

By default, multiple occurrences of the same embed_ref
are shared. For example, if you created a single
embed_ref and inserted it as a character, subsequent
copy/paste operations ��ght duplicate the reference
several t��es; yet, only one embed_ref is maintained by
OpenPaige. Each copy is merely a pointer to the same
(shared) memory.

In special cases, however, an application ��ght need to
force unique occurrences for each copy. For example,
suppose the user is allowed to edit an embedded picture
(such as changing its size or content). If multiple
copies exist in the text, changing one of them would

change the appearance of all—which may not be a
desirable feature.

The work-around is to pass the follo��ng value in the
flags parameter when pgNew��bedRef() is called:

#define NO��SHARED_FLAG0x00080000 �� ��bed_ref not
shared

Setting flags to this value tells OpenPaige that for
each copy/paste operation, the embed_ref needs to be
ne��y created. Hence, each copy ��ll be a unique
reference and not shared.

28.15 File Saving

Unless you call the function below ��mediately after
calling pgSaveDoc, embed_refs contained in a document
do �ot automatically get saved to an OpenPaige file:

pg_error pgSaveAll��bedRefs ($\mathr�{pg}� _ref
pg, file_io_proc io_proc, file_io_proc data_io_proc,
long PG_FAR *file_position, file_ref filemap);

This function writes all embed_refs in pg to the file
specified. The pg, io_proc, file_position and filemap
are the same parameters you just gave to pgSaveDoc()
for pg, write_proc, file_position, and filemap,
respectively. The data_io_proc should be NULL (it is
only used in very specialised cases).

This function is safe to call even if there are no
embed_refs contained in pg (if that is the case,
nothing gets written to the file).

The reason this function is separate, as opposed to
OpenPaige saving embed_refs automatically, is that some
OpenPaige developers ��ll not be using the embed_ref
extension, so the required library to handle this
feature ��ght not exist in every application.

For each embed_ref that is saved, the callback
function ��ll be called ��th ��BED��R���_DATA as the
command.

The pgSaveAll��bedRefs is to be used to save
embed_refs already existing in pg; if you have
embed_refs around that are not inserted anywhere, you
need to save them discretely using the follo��ng
function:

pg_error pgSave��bedRef (pg_ref pg, embed_ref ref,
long element_info, file_io_proc io_proc,
file_io_proc data_io_proc, long PG_FAR
*file_position, file_ref filemap);

The above function is s���lar to pgSaveAll��bedRefs
except a single embed_ref is saved to the file. The
element_info value can be anything, and that value is
returned to a read handler when the data is read later.
If this function is successful, zero (NO_ERROR) is
returned.

NO��: You do not need to call this function unless you
need to save an embed_ref that you have kept around
that isn't inserted into a document.

28.16 File Reading

Since OpenPaige can not make the assumption that the
embed_ref extension library is available in all
applications, you must tell the file I/O mechanism that
an OpenPaige file being read ��ght contain embed_refs.
You do so by calling the follo��ng function at least
once before calling pgReadDoc:

void pgInit��bedProcs (pg_globals_ptr globals,
embed_callback callback, app_init_read init_proc);

This initialises the embed_ref read handler so it can
process any embed_ref ��thin the text stream during
pgReadDoc. You only need to call this function once,
some t��e after pgInit and before the first pgReadDoc.

The callback parameter should be a pointer to a
callback function that you want to set, as the default
callback, for all embed_refs that are read. This
function should either be NULL (for no callback) or a
pointer to the same kind of function used for callback
when inserting an embed_ref. The reason you need to

provide this parameter when reading a file is the ne��y
created embed_refs won't have callback functions (hence
there would be no way to exa��ne the inco��ng data).
Additionally, OpenPaige sets the callback given in
pgInit��bedProcs to become the callback for all the
embed_refs read from the file.

An embed_ref is read from the file and processed as
follows:

1. The embed_ref is created and the default contents
are read;

2. The callback function is called ��th
��BED_READ_DATA, giving your application a chance
to append additional data that ��ght have been
saved;

3. OpenPaige walks through all the style_info records
and attaches the embed_ref to all appropriate
elements; for each style_info that contains the
embed_ref, the callback is called once more ��th
��BED_IN��.

The init_proc is an optional function pointer that ��ll
be called after an embed_ref is retrieved during file
reading; the pr��ary purpose for this function is to
initialise an embed_ref that is not attached to the
document. Normally you won't need to use this callback
function so just pass NULL; but if for some reason you
have saved an embed_ref discretely (using
pgSave��bedRef()) and it is not applied to any
character(s), the init_proc ��ght be the only way you
can get called back to initialise the embed_ref data.

The init_proc gets called ��mediately after an
embed_ref has been read from a file:

PG_PASCAL (void) init_read(paige_rec_ptr pg,
memory_ref ref);

When init_read is called, the ne��y read embed_ref
��ll be given in ref.

28.17 Additional Support

Checking the Cursor

embed_ref pgPtIn��bed (pg_ref pg, co_ordinate_ptr
point, long PG_FAR *ext_offset, style_info_ptr
associated_style, pg_boolean do_callback);

This function returns an embed_ref, if any, that
contains point. If no embed_ref contains point,
M���NULL (zero) is returned.

If text_offset is non-NULL and an embed_ref containing
point is found, *text_offset is set to the text
position for that ref. Like��se, if associated_style
is non-NULL, then *associated_style is initialised to
the style_info for that ref.

If do_callback is TRUE, the callback function for the
embed_ref is called ��th ��BED_CURSOR command when and
if the point is contained in an embed_ref. (See "The
Callback Function" and ��BED_CURSOR command in "Command
Messages").

embed_ref pgGet��bedJustClicked (pg_ref pg, long
drag_select_result);

Returns the embed_ref that was clicked during the last
call to pgDragSelect. If no embed_ref was clicked from
the last pgDragSelect, the function returns M���NULL
(zero).

The drag_select_result should be whatever value was
returned from the last call to pgDragSelect (�hich is
actually how pgGet��bedJustClicked knows which
embed_ref was clicked).

Finding/Searching

embed_ref pgFindNext��bed (pg_ref pg, long PG_FAR
*text_position, long match_refcon, long AND_refcon);

This function does a search through all the embed_refs
in pg and returns the first one that matches the
criteria specified. The search begins at
*text_position. If an embed_ref is found, it is
returned and *text_position is set to the text offset

for that ref. Other��se, M���NULL is returned and
*text_position is set to the end of the document.

For example, to search for an embed_ref starting at the
document's beginning, set a long to 0 and pass a
pointer to it as text_position.

Essentially, the function searches for the first
occurrence of an embed_ref whose callback_refcon (the
value given to pgInsert��bedRef) matches match_refcon;
the callback refcon value in the embed_ref is first
ANDed ��th AND_refcon, then compared to match_refcon.
If the comparison is equal, that embed_ref is
considered a true match and it is returned.

For example, if you wanted to find the next embed_ref
that had a 1 set for the low-order bit of the callback
refcon, you would pass 1 for both match_refcon and
AND_refcon.

If you s��ply want to find the first occurrence of any
embed_ref, pass 0 for both match_refcon and
AND_refcon.

To find an exact, specific embed_ref (per value in
callback refcon), pass that exact refcon value in
match_refcon and -1 for AND_refcon.

embed_ref pgGetExisting��bed (pg_ref pg, long
user_refcon);

Returns the embed_ref currently in pg, if any, that
contains user_refcon. The user_refcon being searched
for is the same value given to pgNew��bedRef
originally.

NO��: The user_refcon is the value that was given to
pgNew��bedRef(), which can be different to the
callback refcon.

If one is not found that matches user_refcon, this
function returns M���NULL.

long pgNum��beds (pg_ref pg, select_pair_ptr
selection);

Returns the total number of embed_refs contained in the
specified selection of pg. If selection is a null
pointer, the current selection is used.

Once you know how many embed_refs are present in the
specified range of text, you can access individual
occurrences using pgGetInd��bed (���ra).

embed_ref pgGetInd��bed (pg_ref pg, select_pair_ptr
selection, long index, long PG_FAR *text_position,
style_info_ptr associated_style);

Returns the �th embed_ref ��thin the specified
selection. If selection is a null pointer, the current
selection is used.

If text_position �s �ot a null pointer, then
*text_position gets set to the (zero-indexed) text
position of the embed_ref.

If associated_style is non-NULL, the style_info is
initialised to the style the embed_ref is attached.

If the index embed_ref does not exist, the function
returns M���NULL (and neither *text_position nor
*associated_style is set to anything).

NO��: The index value is o�e-based, i.e. the first
embed_ref is 1 (not zero).

28.18 ��scellaneous Support

long pgGet��bedBounds (pg_ref pg, long index,
select_pair_ptr index_range, rectangle_ptr bounds,
short PG_FAR *vertical_pos, co_ordinate_ptr
screen_extra);

This function returns the bounding d��ensions of the
embed_ref represented by index ��thin the index_range;
if index_range is NULL, the whole document is used.

The index is zero-based (first embed_ref in the
document is zero). You can deter��ne how many embed_ref
exist by calling pgNum��beds().

This function returns the text position of the
embed_ref (�hat character it applies to relative to the
0th char); the bounding rectangle of the ref is
returned in *bounds and the *vertical_pos parameter
returns the item's descent value (distance from
baseline to botto�).

NO��: Any or all of these parameters can be NULL if you
don't need the information.

The rectangle returned in *bounds ��ll be the enclosing
box of the embed_ref �ot scrolled, i.e. where it would
be on the screen, were pg's scroll position (0, 0). If
screen_extra is non-NULL then it ��ll be set to the
amount of pixels you would need to offset the bounding
rectangle in order to obtain the physical location of
its bounds. Hence, if you offset *bounds by
screen_extra �� h and screen_extra �� v you obtain the
WYS��YG rectangle.

long pg��bedStyleToIndex(pg_ref pg, style_info_ptr
embed_style);

Returns the index value of the embed_ref attached to
embed_style, if any. This function is useful for
obtaining an "index number" for an embed_ref where only
the style_info is known. If no embed_ref exists for
embed_style, zero is returned; other��se assume the
function result is the related index.

This index value can then be used for functions that
require it such as pgGet��bedBounds, pgGetInd��bed,
etc.

void pgSet��bedBounds(pg_ref pg, long index,
select_pair_ptr index_range, rectangle_ptr bounds,
short PG_FAR *vertical_pos, short draw��ode);

This function changes the bounding d��ensions and/or
the baseline position (descent) of an embed_ref ��thin
a document.

The index parameter specifies which embed_ref to
change (one-indexed), and index_range indicates the
range of text to consider. If index_range is NULL the
current selection is used.

For example, if the current selection contained ��o
embed_refs, an index of 1 would indicate the first
embed_ref ��thin that selection and a 2 would indicate
the second embed_ref. The physical order of embed_refs
is the order in which they appear in the text (not
necessarily the order they were inserted).

The bounds rectangle indicates the embed_ref's new
��dth and height. Note that ��dth and height are taken
from the rectangle d��ensions—the physical top-left
location of the embedded object is not altered. If
bounds is NULL the embed_ref d��ensions remain
unaltered.

The vert_pos parameter should point to a value that
indicates the amount of descent, in pixels, that the
embed_ref should be drawn relative to the text
baseline. This is a positive value, i.e. a value of 3
��ll cause the embed_ref to draw three pixels below the
text baseline.

The vert_pos parameter can also be NULL, in which case
the object's descent remains unchanged.

If draw��ode is non-zero, the text in pg (including
the changes to the embed_ref) is redrawn.

28.19 Undo Support

You can prepare for undoing an embed_ref insertion by
calling pgPrepareUndo(), passing undo_embed_insert as
the undo verb. You should do this just before inserting
an embed_ref.

Other��se, there is no specific undo support required
for embed_ref (because after they are inserted, all the
normal undo operations ��ll work—undo for Cut, Paste,
format changes, etc.).

28.20 Relationship to Style Info

OpenPaige stores embed_refs directly in the style_info
record. The follo��ng style_info fields contain
embed_ref information (from style_info struct):

long embed_entry; /* App
callback rfunction for embed_refs */

long embed_style_refcon; /* Used by embed
object extension */
long embed_refcon; /* Used by
embedded object extension */
long embed_id; /* Used by
embedded object extension */
memory_ref embed_object; /* Used by embedded
object extension */

The callback function is stored in embed_entry;
embed_style_refcon is the callback refcon and
embed_refcon is the user refcon (see refcon values for
pgNew��bedRef and for pgInsert��bedRef).

The embed_id ��ll contain a unique ID number generated
by OpenPaige; this value has no direct meaning except
that it is created to keep style_infos and embed_refs
from running together.

The embed_ref itself is in embed_object.

28.21 Examples

��ndows Example

The follo��ng is an example of inserting a metafile as
a "character" into a pg_ref. It also shows how to
prepare for an Undo.

/* This function embeds a meta file into the text.
The x and y extents are given in x_ext and y_ext.
Note, the x and y extents should be given in device
units. The user_refcon param is whatever you want it
to be for application reference. The callback param
��ll become the embed callback, or NULL if you want
to use the default. */

void Inser��etafile (pg_ref pgRef, HM��AFILE meta,
int x_ext, int y_ext, long user_refcon,
embed_callback callback)
{

metafile_struct metafile;
embed_ref ref;
void PG_FAR *the_data;

/* It is a good idea to fill struct ��th

zeros for future compatibility. */

memset(�objData, '\O',
sizeof(PAIGEOBJECT��RUC�));

metafile. metafile = (long)�eta;
metafile.bounds.top_left.h =

metafile.bounds.top_left.v;
metafile.bounds.bot_right.h = x_ext;
metafile.bounds.bot_right.v = y_ext;
metafile.�apping��ode = M��ANISOTROPIC;
metafile.x_ext = x_ext;
metafile.y_ext = y_ext;
the_data = (void PG_FAR *) &metafile;
ref = pgNew��bedRef(�me��globals,

embed��eta_file, the_data, 0, 0, 0, user_refcon,
FALSE);

pgInsert��bedRef(pgRef, ref,
CURREN��POS���ON, 0, callback, 0, best��ay);
};

Macintosh Example

/* The follo��ng example shows inserting a
PicHandle as a "character". The picture's descent
(distance below baseline) is 20% of its height. We
also prepare for an Undo. */

void InsertPicture (pg_ref pg, PicHandle picture)
{

embed_ref ref;
undo_ref undoStuff;

ref = pgNew��bedRef(�me��globals,
embed��ac_pict, (void*) picture, 0, 0, (pg_fixed)
20��16, 0, FALSE);

undoStuff = pgPrepareUndo(pg,
undo_embed_insert, NULL);

pgInsert��bedRef(pg, ref, CURREN��POS���ON,
0, NULL, 0, best��ay);
}

A Custom embed_ref

This example shows how to create and manipulate a
custom embed_ref. In this case we are creating a s��ple
box for which we draw a frame, and we respond in some
way if the user double-clicks in this box.

For purposes of demonstration, we also attach a data
struct to the custom embed_ref. While this example
doesn't do anything ��th that data, it shows how you
would save and read your data to an OpenPaige file.

/* Insertion of a custom ref into a pg_ref "pg".
Upon entry, ��dth and height define the d��ensions
of the box; data is a pointer to some arbitrary data
structure that gets attached to the ref (and
eventually saved to the OpenPaige file) and dataSize
is the size of that data. The callbackProc param is
a pointer to our callback function (a��ost mandatory
for any custom embeds). The refCon value becomes the
callback refcon. */

void makeCustomRef (pg_ref pg, short ��dth, short
height, char *data, long dataSize, embed_callback
callbackProc, long refCon)
{

embed_ref ref;
pg_embed_ptr embed_ptr;

/* Create a custom ref, but if we specify
embed_user_data then OpenPaige ��ll attach the data
to the ref. */

ref = pgNew��bedRef(�me��globals,
embed_user_data, (void*) data, dataSize, 0, 0, 0,
FALSE);

/* The follo��ng code is vital for a
"custom" user type since OpenPaige has no idea how
tall our embed item is, nor does it know how ��de it
is: */

embed_ptr = UseMemory(ref); �� Get the embed
struct

embed_ptr �� height = height;
embed_ptr �� ��dth = ��dth;
UnuseMemory(ref);

�� Insert the ref. (Also add pgPrepareUndo()

here if desired).
pgInsert��bedRef(pg, ref, CURREN��POS���ON,

0, callBackProc, refCon, best��ay);
}

/* The follo��ng code is the callback function for
the embed_ref. OpenPaige calls this ��th various
"messages". */

PG_PASCAL (long) callBackProc (paige_rec_ptr pg,
pg_embed_ptr embed_ptr, long embed_type, short
command, long user_refcon, long para��, long param2)
{

memory_ref specialData;
Rect theBox;
char *extraBytes;
long result = 0 ; �� Default function result

s��tch (command)
{

case ��BED_DRAW:
�� In this example we frame

the box.
�� para�� is a rectangle_ptr

of the box

RectangleToRect((rectangle_ptr)para��, NULL,
��heBox);

FrameRect(��heBox);
break;

case ��BED��OUSEDOWN:
case ��BED��OUS��OVE:
case ��BED��OUSEUP:
case ��BED_DOUBLECLICK:

result =
pgDefault��bedCallback(paige_rec_ptr pg,
pg_embed_ptr embed_ptr, long embed_type, short
command, long user_refcon, long para��, long
param2);

if (command ��
��BED_DOUBLECLICK)

HandleMyDoubleClick(pg, user_refcon);
�� The

"HandleMyDoubleClick() is whatever���
break;

case ��BED_DE��ROY:
/* ��portant note: Since our

embed_ref type is embed_user_data, we can let
OpenPaige dispose the data. However if we attached
our own data directly we would NOT call the standard

callback, or we would crash! */
result =

pgDefault��bedCallback(paige_rec_ptr pg,
pg_embed_ptr embed_ptr, long embed_type, short
command, long user_refcon, long para��, long
param2);

break;
case ��BED��R���_DATA:

/* NO��, since our embed
type is embed_user_data, OpenPaige ��ll save that
data automatically, so we don't need to do anything
for this message. But purely for the sake of
demonstration we ��ll save ��o extra bytes to the
file to show how it is done: */

specialData = (�emory_ref)
para��;

Se��emorySize(specialData,
sizeof(char) * 2);

extraBytes =
UseMemory(specialData);

extraBytes[0] =
myCustomChar1;

extraBytes[1] =
myCustomChar2;

UnuseMemory(specialData);
break;
/* NO��, since our embed

type is embed_user_data, OpenPaige ��ll read that
data automatically, so we don't need to do anything
for this message. But purely for the sake of
demonstration we ��ll read the ��o extra bytes from
the file that we saved in ��BED_READ_DATA: */

extraBytes = (char*) para��;
�� Pointer to data

myCustomChar1 =
extraBytes[0];

myCustomChar2 =
extraBytes[1];

break;
default:

result =
pgDefault��bedCallback(paige_rec_ptr pg,
pg_embed_ptr embed_ptr, long embed_type, short
command, long user_refcon, long para��, long
param2);

break;
}

return result;
}

29 MAIL ��RGING

"Mail merging" is a feature in which specific portions
of text can be temporarily swapped ��th text from other
sources. We are referring to it as "mail merge" because
this feature is typically used to substitute special
embedded symbols or fields ��thin a document ��th data
from a database for form letters, mailing labels,
statements, etc.

29.1 How merging works

In OpenPaige, merging is essentially a custom style.
For more about custom styles in general see "Creating a
s��ple custom style" and "Custo��zing OpenPaige".
Specifically, the merge feature is accomplished as
follows:

1. A merge "symbol" is s��ply a specific style (set by
the application) which is applied to a portion of
text. It differs from other styles s��ply by the
existence of a merge_proc other than the default
(see point 2 belo�). Other��se, such "symbols" can
be any kind of characters, words or phrases the
application ��shes to embed in the text stream to
convey "merge fields".

For the sake of discussion, we shall refer to this
style attribute as a merge style.

2. A merge style must have the merge_proc function
pointer set to an application-defined function (see
"merge_proc").

3. By itself, a merge style does nothing and text set
to a merge style remains unchanged until the
application calls pgMergeText (belo�). OpenPaige
��ll then call the appropriate merge_procs, at
which t��e the application makes the decision for
substituting text (or not).

4. When pgMergeText is called, the text for which all
merge styles applied is temporarily pus�ed (saved)
into an internal memory_ref ��thin the OpenPaige
object. Later, when the application ��shes to
revert from "merge mode", the document can be
completely restored to its original state, prior to
any text substitutions.

Sample merge text proc

This is called when the styles need to be initialized.
Usually at the beginning of the progra�. This sets the
merge style procs and user_id and the mask makes it so
only the ��o desired procs, merge_text_proc and
setup_insert, get set to our custom ones follo��ng:

void Ini��ergeStyles(pg_ref pg)
{

style_info style, mask;
pg_style_hooks style_functions;
pgInitStyleMask(�mask, 0);

style.user_id = ��YLE_IS���RGE;
mask.user_id = -1;

�� The idea is to change only the styles
that have pictures:

InitStyleProcsToDefaults(�style_functions);
�� Init standard procs first.

style_functions.�erge = (pg_proc)
merge_text_proc;

style_functions.insert_proc = (pg_proc)
setup_insert;

pgSetStyleProcs(pg, &style_functions,
&style, &mask, NULL, 0, ��YLE_IS���RGE, FALSE,
dra��none);
}

Mail merge fields are inserted into text

/* This function inserts my "mail merge" fields
into the text. I shall use only a couple of style
hooks to make this work. */

void insert��erge_fields (doc_rec *doc)
{

style_info style, mask;
short index, size_of_fld;
Str255 name_of_fld;
for (index = 0; index < NUM���RGE_FLDS;

��index)

{
GetIndString(name_of_fld,

��RGE_��RINGS, index + 1);
size_of_fld = name_of_fld[0];
pgGetStyleInfo(doc �� pg, NULL,

FALSE, &style, &mask);
pgInitStyleMask(�mask, 0);

�� Set up everything I want in the
style_info record:

style.user_id = ��YLE_IS���RGE;
style.class_bits |= (��YLE_IS_CU��OM

| GROUP_CHARS_B��);
style.char_bytes = 0;
style.user_data = index;
mask.user_id = -1;
mask.user_data = -1;
mask.class_bits = -1;
mask.char_bytes = -1;

�� Set desired function pointers:

style.procs.�erge = (pg_proc)
merge_text_proc;

style.procs.insert_proc = (pg_proc)
setup_insert;

mask.procs.�erge = (pg_proc) - 1;
mask.procs.insert_proc = (pg_proc) -

1;
pgSetStyleInfo(doc �� pg,

(pg_char_ptr) &name_of_fld[1], size_of_fld,
CURREN��POS���ON, data_insert��ode, 0, dra��none);

}

InvalRect(�doc �� ��ptr �� portRect);
DoAllUpdates();

}

Sample setup_insert hook for merging

/* This is the hook that gets called when OpenPaige
saves off the next style to apply from the next

insert. The reason I need this for merge
"characters" is because I don't want the user to
"type" or extend text if the caret sits on one of my

merge styles. Hence, this function must remove my
own hooks from the style so it becomes just a
regular style. */

static pascal short setup_insert (paige_rec_ptr pg,
style_info_ptr style, long position)
{

pgInitStyleProcs(�style �� procs);
�� This sets all the standard procs
style �� class_bits = 0;
style �� user_data = style �� user_id = 0;

return TRUE;
/* Won't call me again (because I just nuked

my own function ptr */
}

merge_text_hook

�� This gets called by page to swap out text during
pgMergeText.
static pascal short merge_text_proc (paige_rec_ptr
pg, style_info_ptr style, pg_char_ptr text_data,
pg_short_t length, text_ref merged_data, long
ref_con)
{

short field_size
char *str_to��erge;
field_size = *merge_text[style ��

user_data];
if (!merged_data)

return TRUE;
Se��emorySize (�erged_data, field_size);
if (!field_size)

return TRUE;
str_to��erge = (char*) merge_text[style ��

user_data];
��str_to��erge;
BlockMove(str_to��erge,

UseMemory(�erged_data), field_size);
UnuseMemory(�erged_data);
return TRUE;

}

29.2 Merge mode

Assu��ng all your merge styles have been set up (all
the desired merge areas have a merge_proc set in their
style_info record), placing the OpenPaige object in
"merge mode" is accomplished by calling the follo��ng:

(pg_boolean) pgMergeText (pg_ref pg, style_info_ptr
matching_style, style_info_ptr mask, style_info_ptr
AND��ask, long ref_con, short draw��ode);

For every style_info that matches a specified criteria
(based on the contents of matching_style, mask and
AND��ask as described belo�), has its merge_proc
called, at which t��e text can be substituted in place
of the text that currently exists for each style
involved.

Before any text is substituted, however, the "old" text
is saved temporarily ��thin the OpenPaige object. This
is intended to allow the application to "revert" to the
original document at some later t��e.

Styles that are affected by this call (in which the
merge_proc gets called) are deter��ned on the follo��ng
bases:

The fields in each style_info record in OpenPaige
is compared to each field in matching_style if the
corresponding field in mask is non–zero.
Before the comparison, the corresponding field in
AND��ask is temporarily AND'd ��th the target
style_info field in OpenPaige before it is
compared.
If all fields that are checked in this way match
exactly, the style is "accepted" and the merge_proc
gets called.

Any of the three comparison styles — matching_style,
mask and AND��ask can be null pointers to control the
comparison procedure, in which case the follo��ng
occurs:

If matching_style is null, then all styles in pg
are considered "valid" ��th no comparisons made,
hence all merge_procs are called.

If mask is null, all fields in each style are
compared to matching_style (none are skipped).
If AND��ask is null, no AND occurs before the
field comparisons (instead, the fields are compared
as-is).

Using the various combinations of matching_style, mask
and AND��ask, you can selectively "merge" various
styles based on a nearly infinite set of criteria.

The ref_con parameter can be anything; this value gets
passed to the merge_proc.

NO��: The ��RGE��ODE_B�� ��ll be set in pg's
attributes when the document has been "merged" in the
above fashion.

You can check the attributes using pgGetAttributes.

FUNC��ON RESU��: This function returns TRUE if anything
merged at all; FALSE is returned if no text has been
substituted from any merge_proc (hence the document
remains unchanged).

NO��S

1. If you intend to revert to the original document
using pgRestoreMerge ���ra, you must not insert any
new text or allow any kind of editing by the user
until you revert. It is OK, however, to do multiple
pgMergeText calls before reverting the document.

2. The original document is saved only once;
subsequent pgMergeText calls ��ll not save the
merge styled text again. Hence, you can make
multiple pgMergeText calls before reverting, then
pgRestoreMerge ��ll revert the document to its
state before the first merge.

3. Even if you intend not to revert the text, you need
to call pgRestoreMerge anyway, other��se a memory
leak can result.

Restore merge

(void) pgRestoreMerge (pg_ref pg, pg_boolean
revert_original, short draw��ode);

This function "reverts" pg to its original state, prior
to the first pgMergeText call if revert_original ��
TRUE.

If revert_original �� FALSE, the previous text that has
been saved ��thin pg is s��ply disposed and the
document is not reverted. The purpose of this parameter
is to allow a document to "convert" to a merged state,
but to keep it that way.

If draw��ode is non–zero, pg is re–displayed.
draw��ode can be the values as described in Draw Modes
under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen, overwrite
direct_or, �� Directly to screen, "OR"
direct_xor, �� Directly to screen, "XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy offscreen in
"OR" mode
bits_xor �� Copy offscreen in
"XOR" mode

This function only needs to be called once, even after
multiple pgMergeText calls. Once you have reverted,
however, a subsequent call to pgRestoreMerge ��ll do
nothing (unless you have done another pgMergeText).

This function also clears the ��RGE��ODE_B�� from pg's
attributes.

NO��: Even if you do not ��sh to revert the text, you
should call pgRestoreMerge anyway (��th
revert_original as FALSE) if anything has merged to
dispose the saved text.

Show Merged Items

{
init��erge_strings();
if (pgGetAttributes(doc �� pg) &

��RGE��ODE_B��)
{

pgSetHiliteStates(doc �� pg,
no_change_verb, activate_verb, FALSE);

pgRestoreMerge(doc �� pg, TRUE,
dra��none);

}
else
{

pgMergeText(doc �� pg, NULL, NULL,
NULL, 0, dra��none);

pgSetHiliteStates(doc �� pg,
no_change_verb, deactivate_verb, FALSE);

}
InvalRect(�doc �� ��ptr �� portRect);
DoAllUpdates();

}

��CH NO��: ��YLE_IS_CU��OM bit set incorrectly

I looked into your code and found that
you are correct that setting up the
style_info record is the proble�. You
need to re�ove the class_bits setting,
��YLE_IS_CU��OM. That's what is
forcing the merge field to not dra�.

��YLE_IS_CU��OM tells OpenPaige that only your app
knows how to draw the style and measure its characters.
Hence, if you call the standard draw/measure functions
(�hich you are), they ��ll do �ot���g. I not only
noticed the fields were invisible, on my machine, but
the char ��dths would result in random garbage text
sizes (�hich is correct since the standard measuring
does nothing for ��YLE_IS_CU��OM).

Technically, the style is not "custom" at all—it has
regular text chars and it draws like any other text. By
strict definition, a ��YLE_IS_CU��OM means OpenPaige
can't understand the "text" strea�, such as an embedded
PicHandle or ControlHandle, etc.

��CH NO��: Merge fields and blank lines

Regarding merge fields and blank lines (and how to
remove the�) in items like addresses, I am not sure I
have a perfect answer for that. I don't think you dare
try deleting anything from ��thin a hook, you ��ll

probably get a debugger break (because memory_refs for
the text and styles ��ll be locked and "in use").

The only thing I can think of is to detect this
situation and, after all is merged, go back and delete
the "blank lines".

CAU��ON: If you do this, I am not sure pgRestoreMerge
��ll work correctly, because it assumes you have not
edited the document.

We had another customer doing extensive altering of a
merged document for s���lar reasons, and he had to
s��ply restore the original doc ��thout using
pgRestoreMerge. Rather, he would copy the document and
then do pgUndo.

��CH NO��: Restore-all not yet ��plemented and
the work-around

If I understand you correctly, the reason you need to
throw away each document and reread it—as opposed to
relying on "restore merge" feature—is due to your extra
editing of the document and the fact that "restore
merge" just restores the merge styles.

The supreme work-around would be, of course, for us to
add "restore all" to the merge features—which,
incidentally, is not a bad idea. Sooner or later,
someone else ��ll encounter the same proble�.

In the meant��e (since that feature is not currently
available in pgMerge), I would suggest starting ��th a
single pg_ref, as you are no�, but use pgCopy to
duplicate the doc, given that pgCopy can produce what
you thought pgDuplicate did.

Here are some precautions/hints:

To duplicate a whole document, s��ply use pgCopy
��th a selection parameter for whole text range.
(Remember that pgCopy returns a new pg_ref—which
is exactly what you want).
You ��ght have a problem displaying the copied
pg_ref; I do not believe the exact vis and page
areas are copied. In that case you ��ght need to
set those shapes before dra��ng (or printing) the
merged document. I would get the shape(s) from the
master document then do pgSetAreas to the copy.

Even faster would be to get the master shapes once
at the beginning, ��th pgGetAreas, then set them
for each merge.
I do know for sure that a copied pg_ref, from
pgCopy, ��ll have no graf_device associated ��th
it. I do not know if this is a problem if you
intend to print, since pgPrintPage accepts a
graf_device (�hich would be a print port). But if
you need to draw the merged doc to a ��ndo�, you
��ll need to set a ��ndow port using
pgSetDefaultDevice, or you ��ll need to specify a
graf_device_ptr in pgDisplay. Other��se, the
dra��ng ��ll be "invisible" and you ��ll think you
are going crazy. I believe our manual explains this
(if not, I ��ll be happy to provide more details).
In OpenPaige's current stage, I do not believe
anyone has yet to display (or print) a copied
pg_ref returned from pgCopy. Usually, they just
paste ��th it. In that case, you may have
unforeseen problems. However, all such cases (other
than the precautions listed above) I would consider
a bug, so be sure to let us know so the proble�(s)
can be corrected. We ��ll make sure that a copied
pg_ref displays correctly, one way or the other.
You may encounter some slowness ��th this work-
around. However, that ��ll probably ��prove during
future updates.

30 ADVANCED ��YLES

This chapter unveils all of the style and font setting
abilities ��thin OpenPaige. For easier and quicker
��plementation of style setting, you ��ll want to look
at "Style Basics".

NO��: As used in this chapter, the term �o�t generally
refers only to a typeface, or typeface name, unlike a
��ndows "font" that defines the whole composite format
of text. OpenPaige considers a �o�t to s��ply be a
specific fa��ly such as T��es, Courier, Helvetica, etc.
while distinguishing other formatting properties such
as bold, italic, underline, etc. as the text sty�e.

30.1 Data Structures

For the sake of clarity and easier ��plementation of
text formatting, the exact structure definitions and
descriptions for style, font and paragraph formats are
given at the end of this section. While you ��ll need
to set up these structures to effectively change text
styles, they have been placed at the end for easier
reference.

To understand the functions, however, let it suffice to
declare the type for each of the four formats, as
follows:

Record
Type

Pointer (to the
record)

Description

style_info style_info_ptr
Structure defining a
style

font_info font_info_ptr
Structure defining a
font

par_info par_info_ptr
Structure defining
paragraph format

style_run style_run_ptr
Structure designating a
style run.º

º A series of style_run records is maintained by
OpenPaige to define all the style changes and
associated text offsets. This record is much smaller
than either style_info or par_info, thus requiring
only one style_info record for every identical style
change throughout the text and one par_info record for

every identical paragraph format throughout the text.
The style_run record is defined at the end of this
section; most of the t��e you ��ll not need to access
style_runs.

30.2 More About Style Runs

For both style_info and par_info changes throughout
the text, OpenPaige maintains a list of style_run
records. There is one style_run array for style_info
changes and one array for par_info changes.

The last element in a style_run array is a "dummy"
entry whose offset field ��ll be greater than the total
text size of the pg_ref. For example, if the total text
size of a pg_ref is 100 bytes, the final element in the
array of style_run records ��ll contain a value in
style_run.offset of > 100.

30.3 Style Basics

To s��ply set a style, font, size or paragraph format,
see "Style Basics". The follo��ng information is for
those developers wanting more precise control of style,
font and paragraph format setting.

30.4 Changing Fonts and Styles
together

This sets the font and style at the same t��e.

(void) pgSetStyleAndFont (pg_ref pg,
select_pair_ptr selection, style_info_ptr the_style,
style_info_ptr style��ask, font_info_ptr font,
font_info_ptr font��ask, short draw��ode);

selection — parameter defines the range of text that
should be changed; alternatively, if you pass a null
pointer, the current selection range (or insertion
point) in pg is changed.

If you do give a pointer to selection, it must point to
the follo��ng structure:

typedef struct
{

long begin; �� Beginning offset of some text
portion

long end; �� Ending offset of some text
portion
}
select_pair, *select_pair_ptr;

begin field of a select_pair — defines the
beginning text offset and the end field defines the
ending offset. Both offsets are byte offsets, not
character offsets. Text offsets in OpenPaige are
zero-indexed (first offset is zero).

info and mask — parameters must point to
style_info records; info is the new style to apply
to the text and mask defines which of the info
fields to apply. For every non–zero field in mask,
the corresponding field in info gets applied to the
text.

mask — parameter allows only partial style changes,
which is a��ost a��ays what you want to accomplish.
For instance, if the user highlighted some text and
changed it to bold, all you want to change in the
text range is the bold attribute, not anything else
such as colour, leading, or any other formatting.
To do so, you would set info's style element for
bold and the same field in mask to non–zero.

font and font��ask — is a��ost identical to the
s���lar style parameters, except in that a
font_info record is used for font and font��ask.

info, mask, font and font��ask — None of these
can be a null pointer.

draw��ode — parameter indicates whether or not to
redraw the text once the style has changed: if
draw��ode is non–zero, that dra��ng mode is used to
redisplay the text.

If draw��ode is non–zero, pg is re–displayed.
draw��ode can be the values as described in Draw
Modes under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen,
overwrite
direct_or, �� Directly to screen,
"OR"
direct_xor, �� Directly to screen,
"XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy
offscreen in "OR" mode
bits_xor �� Copy
offscreen in "XOR" mode

OpenPaige ��ll only re–draw the text, however, if
it is appropriate: if nothing changed (same styles
applied as already exist), the text is not drawn,
nor is it drawn if the new style applies only to an
insertion point.

NO��: The mask fields that indicate what to change
must be set to -1 (all ones). The reason is that
the internal comparison function—which checks the
mask settings—does one word at a t��e, hence the
fields longer than 16 bits ��ll not change
correctly.

Preparing OpenPaige formats from a LOGFONT
(��ndows)

/* The follo��ng example function converts a
LOGFONT into a font_info, style_info and "mask"
record that can be given to pgSetStyleInfo(): */

static void convert_log_font (pg_ref pg,
pg_globals_ptr paige_globals, LOGFONT PG_FAR
*log_font, font_info_ptr font, style_info_ptr style,
style_info_ptr stylemask)
{

�� Initialise the style to OpenPaige
default:

*style = paige_globals �� def_style;
�� Initialise other structs to zeros or

-1's, etc.:

pgFillBlock(font, sizeof(font_info), 0);
pgFillBlock(stylemask, sizeof(style_info),

0);
pgFillBlock(stylemask �� styles, MAX_��YLES

* sizeof(short), -1);
stylemask �� point = (pg_fixed) - 1;
CToPString(log_font �� IfFaceName, font ��

name);
�� (OpenPaige wants a pascal string)
font �� fa��ly_id = log_font ��

IfPitchAndFa��ly;
font �� machine_var[PG_OU��PRECISION] =

log_font �� IfOutPrecision;
font �� machine_var[PG_CLIP_PRECISION] =

log_font �� IfClipPrecision;
font �� machine_var[PG_QUAL��Y] = log_font -

> IfQuality;
font �� machine_var[PG_CHARS��] = log_font -

> IfCharSet;

if ((style �� point = (pg_fixed)log_font ��
IfHeight) < 0)

style �� point = -style �� point;
style��point ��� 16; �� Make sure point size

is 0x000n0000
�� Convert pointsize to fit the screen

resolution
style��point = pgScreenToPointsize (pg,

style��point);
if (log_font �� I��eight �� ���BOLD)

style �� styles[bold_var] = -1;
if (log_font �� IfItalic)

style �� styles[italic_var] = -1;
if (log_font �� IfUnderline)

style �� styles[underline_var] = -1;
if (log_font �� IfStrikeOut)

style �� styles[strikeout_var] = -1;
}

30.5 Easier "Mask" Setups

Masks

The easiest way to initialise a style_info, font_info,
or par_info record for a "mask" is to call one of the
follo��ng:

(void) pgInitStyleMask (style_info_ptr mask, short
filler);
(void) pgInitFon��ask (font_info_ptr mask, short
filler);
(void) pgInitParMask (par_info_ptr mask, short
filler);

These function fill mask ��th filler.

To set a section of text to a style, call the
follo��ng:

(void) pgSetStylelnfo (pg_ref pg, select_pair_ptr
selection, style_info_ptr info, style_info_ptr mask,
short draw��ode);

selection defines the range of text that should be
changed; alternatively, if you pass a null pointer, the
current selection range (or insertion point) in pg is
changed.

If you do give a pointer to selection, it must point to
the follo��ng structure:

typedef struct
{

long begin; �� Beginning offset of some text
portion

long end; �� Ending offset of some text
portion
}
select_pair, *select_pair_ptr;

begin and end fields of a select_pair — define the
beginning and ending text position. Both values are
byte positions (not necessarily character
positions, e.g. multilingual text can have double-
byte characters, etc.). Text positions in OpenPaige
are zero-indexed (first offset is zero).

info and mask — must point to style_info records;
info is the new style to apply to the text and
mask defines which of the info fields to apply.

For every non–zero field in mask, the corresponding
field in info gets applied to the text.

mask — allows only partial style changes, which is
a��ost a��ays what you want to accomplish. For
instance, if the user highlighted some text and
changed it to bold, all you want to change in the
text range is the bold attribute, not anything else
such as colour, leading, or any other formatting.
To do so, you would set info's style element for
bold and the same field in mask to non–zero.

Neither info nor mask can be a null pointer.

draw��ode — indicates whether or not to redraw the
text once the style has changed: if draw��ode is
non–zero, that dra��ng mode is used to re–display
the text. draw��ode can be the values as described
in Draw Modes under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen,
overwrite
direct_or, �� Directly to screen,
"OR"
direct_xor, �� Directly to screen,
"XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy
offscreen in "OR" mode
bits_xor �� Copy
offscreen in "XOR" mode

HER��S Paige ��ll only redraw the text, however, if
it is appropriate: if nothing changed (same styles
applied as already exist), the text is not drawn,
nor is it drawn if the new style applies only to an
insertion point.

NO��: The mask fields that indicate what to change must
be set to -1 (all ones). The reason is that the
internal comparison function—which checks the mask
settings—does one word at a t��e. Hence, the fields
longer than 16 bits ��ll not change correctly.

NO��: To convert a LOGFONT into a style_info and mask
on ��ndows, see code example earlier in this chapter.

Set some text to "bold" (�acintosh)

/* This function sets the current selection to Bold
(�acintosh) */
void set_to_bold (pg_ref pg)
{

style_info mask, info;
pgInitStyleMask(��nfo, 0); �� Sets all to

zero
pgInitStyleMask(�mask, 0); �� Sets all to

zero
info.styles[bold_var] = -1; �� sets

styles[bold_var] to force bold
mask.styles[bold_var] = -1;
pgSetStyleInfo(pg, NULL, \��nfo, \&mask,

best��ay);
}

While the styles each contain shorts to indicate bold,
italic, etc., this is generally done for future
expansion. When OpenPaige was designed, new fonts were
being created which would use "degrees of boldness",
etc. Generally, this is not ��plemented in OpenPaige
1.0 for Mac and ��ndows except for the follo��ng style
elements:

style_info �� styles[small_caps_var] — The value in
this style element indicates a percentage of the
original point size to display lower case
characters that get converted to ALL CAPS. Or, if
this value is -1 , the default is used (�hich is
75% of the original style).

For example, if style_info ��
styles[small_caps_var] is 50 and style_info point
size is 24, the lower case text is converted to
uppercase 12 point; if style_info ��
styles[small_caps_var] is -1, the lower case text
is converted to 18 (�hich is 75% of 24).

style_info��styles[relative_point_var] — The value
in this style element indicates a point size to
display the text which is a ratio relative to 12

point t��es the original point size. The ratio is
computed as: style_info ��
styles[relative_point_var] / 12. (�he "original
point size" is taken from the point field in
style_info).

For example, if style_info ��
styles[relative_point_var] is 6 and the original
point size is 12, the point size that displays is
12 * (6/12) = 6 point. If style_info ��
styles[relative_point_var] is 6 and the original
point size is 24, the point size that displays is
24 * (6/12)= 12 point.

NO��: The relative_point_var element must not be
"-1" as there is no default.

style_info �� styles[super_��pose_var] — If non–
zero, the value represents a stylesheet ID that
gets "super��posed" over the existing style. What
this means is all fields in the stylesheet
style_info �� styles[super_��pose_var] that are
non–zero are temporarily forced into style_info to
form a composite style of both.

For example, if style_info ��
styles[super_��pose_var] record had all fields set
to zero except �or the bold_var element, the
resulting style would be whatever the original
style_info contained but ��th boldface text.

style_info��styles[super_��pose_var] can only be
zero or a positive number representing a stylesheet
ID that actually exists in the pg_ref.

See the chapter "Style Sheets" for more information.

Insertion Point Changes

If pgSetStyleInfo is called and the specified selection
is a single insertion point, the style change occurs on
the next pgInsert. Furthermore, a processed mouse-click
for change of selection invalidates the style_info set
to the previous insertion point (i.e., the new style
setting is lost).

Exception: Applying a style to a completely empty
pg_ref forces that style_info to become the default

style for that pg_ref.

The point field in style_info is a Fixed type value,
i.e. the integral part of the point size is the high-
order word and the fractional part is the low-order
word. For example, 12 point is (pg_fixed) (12��16) or
0x000C0000.

��CH NO��: Changing point size

I am having some difficulty in setting the
point size of the font ��thin OpenPaige.

Your code doesn't work because the point size in
style_info is a Fixed value, which means the whole-
number point size needs to be in the high-order word—
and you're just setting a long integer (�hich is
putting it in the low-order word). You must have
skipped quite a few OpenPaige versions because that
change has been there for a while.

So, your code is fine except you need to put the point
size in the high-order word, and it ��ll work.
Something like:

theStyle. point = fontSize;
theStyle.point ��� 16;

In case you're curious, OpenPaige only looks at the
high-word of the point size, so setting only the low
word results in "zero point", i.e., the default—12
point—which is why it never changed.

30.7 Changing Fonts

Changing the font applied to text range(s) requires a
separate function call since fonts are maintained
separate from text styles ��thin a pg_ref.

NO��: As used in this chapter, the term �o�t generally
refers only to a typeface, or typeface name, unlike a
��ndows "font" that defines the whole composite format
of text. OpenPaige considers a �o�t s��ply to be a
specific fa��ly such as T��es, Courier, Helvetica, etc.
while distinguishing other formatting properties such
as bold, italic, underline, etc. as the text sty�e.

To set a section of text to a new font, call the
follo��ng:

(long) pgSetFontInfo (pg_ref pg, select_pair_ptr
selection, font_info_ptr info, font_info_ptr mask,
short draw��ode);

This function is a��ost identical to pgSetStyleInfo
except in that a font_info record is used for info and
mask.

selection and draw��ode — are functionally
identical to the same parameters in pgSetStyleInfo.
The same rules apply regarding insertion points
versus selection range(s).

draw��ode can be the values as described in Draw
Modes under section 2.11:

dra��none, �� Do not draw at all
best��ay, �� Use most
efficient method(s)
direct_copy, �� Directly to screen,
overwrite
direct_or, �� Directly to screen,
"OR"
direct_xor, �� Directly to screen,
"XOR"
bits_copy, �� Copy offscreen
bits_or, �� Copy
offscreen in "OR" mode
bits_xor �� Copy
offscreen in "XOR" mode

Detailed information on font_info records—and what
fields you should set up—is available at the end of
this section. There is one ��portant one you should be
sure to set correctly, however: environs.

When you set a font_info record, only the name and
environs fields should be changed; this is because
OpenPaige initialises all the other fields when the
font is applied to a pg_ref.

For Macintosh version, the font_info.name should be a
pascal string ter��nated ��th the remaining bytes in
font_info.name set to zero; the font_info.environs
field should like��se be set to zero. For an example,
read on.

For ��ndows version, the font_info.name can be
initially set to either a pascal string or a cstring,
��th all remaining bytes in font_info.name set to zero.
Usually, due to ��ndows program��ng conventions, you
��ll set the name to a cstring. In this case, before
passing the font_info record to pgSetFontInfo, you
must set font_info.environs to NA��_IS_C��R (see
follo��ng example).

CAU��ON: On ��ndows, OpenPaige converts font_info.name
to a pascal string and clears the NA��_IS_C��R bit
when the font is stored in the pg_ref. This is done
purely for cross-platform portability. This is
��portant to remember, because if you exa��ne the font
thereafter ��th pgGetFontInfo, the font name ��ll now
be a pascal string (the first byte indicating the
string length), not a cstring.

Setting font_info (��ndows)

/* This example assumes we got a "LOGFONT" struct
from a ChooseFont dialog or s���lar. */

LOGFONT log;
font_info font, mask;
pgFillBlock(��ont, sizeof(font_info), 0); �� clear
all to zeros
pgFillBlock(�mask, sizeof(font_info), -1); �� Set to
all 1's lstrcpy((LP��R)font.name, log.IfFaceName);

/* ��PORTANT! The follo��ng line is an absolute MU��
or your code ��ll fail: */

font_info.environs |= NA��_IS_C��R;

/* Apply to the text: */

pgSetFontInfo(pg, NULL, ��ont, &mask, best��ay);

Responding to font menu (�acintosh)

/* In this example, we assume a "Font" menu whose
MenuHandle is Fon��enu, and "item" is the menu item
selected by the user. */

font_info font, mask;
pgFillBlock(��ont, sizeof(font_info), 0); �� clear
all to zeros

pgFillBlock(�mask, sizeof(font_info), -1); �� Set to
all 1's
GetIte�(Fon��enu, ite�, (StringPtr)font.name);
pgSetFontInfo(pg, NULL, ��ont, &mask, best��ay);

30.8 Obtaining Current Text
Format(s)

(long) pgGetStyleInfo (pg_ref pg, select_pair_ptr
selection, pg_boolean set_any��atch, style_info_ptr
info, style_info_ptr mask);
(long) pgGetParInfo (pg_ref pg, select_pair_ptr
selection, pg_boolean set_any��atch, par_info_ptr
info, par_info_ptr mask);
(long) pgGetFontInfo (pg_ref pg, select_pair_ptr
selection, pg_boolean set_any��atch, font_info_ptr
info, font_info_ptr mask);

The three functions above return information for a
specific range of text about its style or paragraph
format, or font, respectively.

For all functions, if selection is a null pointer, the
information that is returned applies to the current
selection range in pg (or the current insertion point);
if selection is non–null, pointing to select_pair
record, information is returned that applies to that
selection range (see "Copying and Deleting" for
information about select_pair pointer under
pgGetStyleInfo).

Both info and mask must point to a style_info,
par_info, or font_info record; neither of the former
can be a null pointer. When the function returns, both

info and mask ��ll be filled ��th information you can
exa��ne to deter��ne which style(s), paragraph
format(s) or font(s) exist throughout the selected
text, and/or which do not.

If set_any��ask was FALSE: All the fields in mask that
are set to non–zero indicate that the corresponding
field value in info is the same throughout the selected
text; all the fields in mask that are set to zero
indicate that the corresponding field value in info is
not the same throughout the selected text.

For example, suppose after calling pgGetStyleInfo,
mask.styles[bold_var] has a non–zero value. That means
that whatever value has been set in
info.styles[bold_var] is the same for every character
in the selected text. Hence if info.styles[bold_var] is
-1, then every character is bold; if
info.styles[bold_var] is 0 , then �o character is bold.

On the other hand, suppose after calling
pgGetStyleInfo, mask.styles[bold_var] is set to zero.
That means that some of the characters in the selected
text are bold and some are �ot. In this case, whatever
value happens to be in info.styles[bold_var] is,
mathematically speaking, u�de���ed (think zero divided
by zero).

Essentially, a non–zero-valued mask is saying,
"Whatever is in info for this field is applied to every
character in the text," and a zero-valued mask is
saying, "Whatever is in info for this field does �ot
�atter because it is not the same for every character
in the text."

Pass FALSE for set_any��ask to find out which styles,
paragraph formats or fonts do and do not apply to the
entire selection.

If set_any��ask is TRUE, all fields in mask get set to
nonzero if the corresponding field value in info
appears a�yw�ere ��thin the selected text. In this
case, you must first set all the info fields that you
want to check before making the call.

The purpose for setting set_any��ask to TRUE is to
find out what ite�(s) in info exist anywhere in the
selected text (as opposed to finding out what items are
the same t�roug�out the text).

NO��: If you pass FALSE for set_any��ask, OpenPaige
sets the info_fields; if you pass TRUE for
set_any��ask, you set the info_fields before calling
pgGetStyleInfo, pgGetParInfo or pgGetFontInfo. This is
a s�g����ca�t difference.

For example, suppose you want to find out if bold
exists anywhere in the selected text. To do so, you
would set info.styles[bold_var] to a non–zero value,
then call pgGetStyleInfo() passing TRUE for
set_any��ask. Upon return, if mask.styles[bold_var] is
TRUE (non–zero), that means bold exists so�ew�ere in
the selected text. On the other hand, had the function
returned and mask.styles[bold_var] was FALSE, that
would have meant that bold exists �ow�ere in the text.

Usually, the reason you would want to pass TRUE for
set_any��ask is to make some kind of notation on a UI
element (e.g. a menu or dialogue box) as to which
style(s) appear anywhere in a selection but do not
necessarily apply to the e�t�re selection.

FUNC��ON RESU��: Each function returns the text offset
(�hich is a byte offset) of the first text that is
exa��ned. For example, if the current selection range
in pg was offsets 100–500, pgGetStyleInfo would return
100; for the same selection range pgGetParInfo would
return the text offset of the beginning of the first
paragraph (�hich would often be less than 100).

NO��: If you want to get information about tabs, it is
more efficient (and less code) to use the functions in
the section belo�, See also, "Tab Support".

30.9 Getting Info Recs

An additional way to obtain the current font that
applies to a text range is to first obtain the style
information that applies using pgGetStyleInfo, then get
the font record by calling the follo��ng function:

(void) pgGetFontInfoRec (pg_ref pg, short
font_index, font_info_ptr info);

font_index — should be whatever is in the
font_index field in the style_info record (�hich

you received from pgGetStyleInfo). The font record
is put into info (�hich must not be a null
pointer).

This function is used to fill in the whole font record
if you already know its font index number, which you do
after doing a pgGetStyleInfo.

Styles and fonts have the same functions that ��ll fill
in the appropriate record.

(void) pgGetStyleInfoRec (pg_ref pg, short
style_ite�, style_info_ptr format);
(void) pgGetParInfoRec (pg_ref pg, short style_ite�,
par_info_ptr format);

These functions take the style_item value from a
style_run record and return a par_info or style_info
record.

NO��: This is a low-level function that you ��ll rarely
need but has been provided for documentation purposes.
See style_run information at "More About Style Runs".

Obtaining a font record

/* This function is to obtain a font record that is
"attached" to a style_info record. For example, you
could get the whole font record after doing
pgGetStyleInfo as follows: */

style_info info, mask;
font_info font;
pgGetStyleInfo(pg, NULL, FALSE, ��nfo, &mask);
pgGetFontInfoRec(pg, info.font_index, ��ont);

30.10 Other Style, Font and
Paragraph Utilities

Set Insertion Styles

This function provides a convenient way to set both a
style record and font for a single insertion point.

(void) pgSetInsertionStyles (pg_ref pg,
style_info_ptr style, font_info_ptr font);

The style parameter ��ll be the style that ��ll apply
to the next pgInsert; the font parameter ��ll be the
font that ��ll apply to the next pgInsert. Neither
parameter can be null.

NO��: This function is intended for single insertion
points and ��ll fail to work correctly if there is a
selection range in pg.

��CH NO��: pgSetInsertionStyles is a
convenience

Is pgSetInsertionStyles just a convenience
function? Or should I be using this to set
font/style info when there is only an insertion
point (no selection), i.e., can I s��ply a��ays
use pgSetStyleInfo and pgSetFontInfo, and
never use pgSetInsertionstyles?

This is only a convenience function; you ��ll probably
never use it. pgSetStyleInfo handles this for you. It
checks the selection and, if only a "caret", it calls
pgSetInsertionStyles for you.

Style info of a Mouse Point

long pgP��oStyleInfo (pg_ref pg, const
co_ordinate_ptr point, short conversion_info,
style_info_ptr style, select_pair_ptr range);

This function is useful for deter��ning which
style_info is applied to the character containing a
specific mouse coördinate. For instance,
pgP��oStyleInfo() can be used to detect what kind of
text the cursor is moving through.

When this function returns, if is non-null it gets set
to the range of text for which this style applies (see
"Selection range" for information about select_pair
record).

conversion_info is used to indicate one or ��o special-
case alignment instructions, which can be represented
by the follo��ng bits:

#define NO_HALFCHARS 0x0001 �� Whole char only
#define NO_BY��_ALIGN 0x0002 �� No multibyte
alignment

NO_HALFCHARS instructs the function to select the right
side of a character if the point is anywhere to the
right of its left side (not having NO_HALFCHARS set
results in the left side of the character if the point
is ��thin its first half-��dth, or the right side of
the character if the point is ��thin its second half-
��dth).

NO_BY��_ALIGN returns the absolute byte position
regardless of multibyte character status. For example,
in a Kanji system that contains double-byte characters,
setting NO_BY��_ALIGN can result in the selection of
1/2 character.

FUNC��ON RESU��: The function result is the text
(character) position for the character found containing
point. The function ��ll a��ays return a style and
position even if the point is way beyond text (in which
case the style for the last character is returned) or
before text (�here the first style is returned). Either
style or range can be a null pointer if you don't need
those values.

NO��: This function a��ays finds some style_info even
if point is nowhere near any text. Hence, to detect
"true" cursor-over-text situations you should also call
pgPtInVie�() to learn whether or not the point is
actually over text.

Font table

(�emory_ref) pgGetFon��able (pg_ref pg);

FUNC��ON RESU��: This function returns the memory
allocation in $p g$ that contains all the fonts used
for the text. The memory_ref ��ll contain an array or
one or more font_info records.

NO��: The actual memory_ref that OpenPaige used for
this pg_ref is returned, not a copy. Therefore do not
dispose this allocation and do not delete any records
it contains.

To learn how to access a memory_ref, see "The
Allocation Mgr" on page 25-1.

30.11 Record Structures

style_info

#define MAX_��YLES32 �� Max��um number of styles
in style_info
typedef struct
{

short font_index;
�� What font this style is in

short styles[�AX_��YLES]; ��
Stylisation extension

short char_bytes;
�� Number of bytes per character less 1

short max_chars;
�� Max��um chars before new style begins

short ascent;
�� This style's ascent

short descent;
�� This style's descent

short leading;
�� Regular leading

short shift_verb;
�� Super/subscript verb

short class_bits;
�� Defines selection and behaviour

long style_sheet_id; ��
Used for style sheet features

long small_caps_index; ��
style_info index for point size

long machine_var;
�� Machine-specific

long machine_var2;
�� Machine-specific

long left_overhang; ��
Style's left overhang if any

long right_overhang; ��
Style's right overhang if any

long top_extra;
�� Style's top leading

long bot_extra;
�� Style's bottom leading

long space_extra;
�� Extra pixels for spaces (Fixed value)

long char_extra;
�� Extra pixels for chars (Fixed value)

long user_id;
�� Can be used by app to ID custom styles

long user_data;
�� Add'l space for app if style is custom

long user_data2;
�� Add'l space for app

long future[3];
�� Reserved for future exp'n

long embed_entry;
�� App callback function for embed_refs

long embed_style_refcon; �� Used by
embedded object ext'n

long embed_refcon;
�� Used by embedded object ext'n

long embed_id;
�� Used by embedded object ext'n

long maintenance;
�� Internal use

long used_ctr;
�� Internal use

color_value fg_color;
�� Foreground colour

color_value bk_color;
�� Background colour

pg_fixed
char���dth; �� Character ��dth (not used
on Mac)

pg_fixed
point; �� Point size (do
��16 on int value)

memory_ref
embed_object; �� Used by embedded object ext'n

style_append_t user_var;
�� Arbitrary use

pg_style_hooks procs;
�� Contains functions on how to draw
}
style_info, PG_FAR *style_info_ptr;

Field descriptions

font_index — The record number of the font that
goes along ��th this style. (�o obtain the actual
font, see "Getting Info Recs" for information about
pgGetFontInfoRec).

NO��: Do not change the font_index using
pgSetStyleInfo. Instead, use pgSetFontInfo and the
font_index values ��ll be handled by OpenPaige
appropriately.

styles — An array of shorts that correspond to 32
possible "standard" styles. Each element of styles,
if non–zero, ��plies that style be applied to the
text. An overall style of "plain" generally means
all style elements are zero.

The standard styles supported by OpenPaige are
defined by the follo��ng enumerates (each
corresponding to one of the array elements):

enum

{
bold_var,
italic_var,
underline_var,
outline_var,
shado��var,
condense_var,
extend_var,
dbl_underline_var,
word_underline_var,
dotted_underline_var,
hidden_text_var,
strikeout_var,
superscript_var,
subscript_var,
rotation_var,

�� future, not currently supported
all_caps_var,
all_lower_var,
small_caps_var,
overline_var,
boxed_var,
relative_point_var,
super_��pose_var,

dsi_custo��var = 27, ��
Internal use by HER��S

custo��var = 28
};

superscript, subscript — If
styles[superscript_var] or styles[subscript_var]
apply, their values define the "amount" of shift.

For example, if styles[sub_script_var] contains a
value of 3, the text is to be shifted down by 3
points (3 pixels). If styles[super_script_var] were
3, the text is to be shifted upwards by 3 points.
However, the shift_verb (���ra) defines whether or
not the super/subscript is relative to the text
baseline or relative to a percentage of the style's
height.

small_caps — If styles[small_caps_var] applies,
the value in this style element indicates a
percentage of the original point size to display
lower case characters that get converted to ALL
CAPS. Or, if this value is -1, the default is used
(�hich is 75% of the original style).

For example, if style_info ��
styles[small_caps_var] is 50 and style_info point
size is 24 , the lower case text is converted to
uppercase 12 point; if style_info ��
styles[small_caps_var] is -1, the lower case text
is converted to 18 (�hich is 75% of 24).

relative_point — If styles[relative_point_var]
applies, the value in this style element indicates
a point size to display the text which is a ratio
relative to 12 point t��es the original point size.
The ratio is computed as: style_info ��
styles[relative_point_var] / 12. (�he "original
point size" is taken from the point field in
style_info).

For example: If style_info ��
styles[relative_point_var] is 6 and the original
point size is 12, the point size that displays is
12 * (6 / 12) = 6 point. If style_info ��
styles[relative_point_var] is 6 and the original
point size is 24, the point size that displays is
24 * (6 / 12) = 12 point.

NO��: The relative_point_var element must not be -1
as there is no default.

super_��pose — If styles[super_��pose_var]
applies, the value represents a stylesheet ID that
gets "super��posed" over the existing style. All
fields in the stylesheet style_info ��
styles[super_��pose_var] that are non–zero are
temporarily forced into style_info to form a
composite style of both.

For example, if style_info ��
styles[super_��pose_var] record had all fields set
to zero EXCEPT for the bold_var element, the
resulting style would be whatever the original
style_info contained but ��th boldface text.

NO��: style_info �� styles[super_��pose_var] can
only be zero or a positive number representing a
stylesheet ID that actually exists in the pg_ref.

See "Style Sheets" for more information.

char_bytes — Defines the number of bytes per
character ��nus 1. For "normal" text, this field
��ll be zero.

NO��: If you are a Macintosh user, do not confuse
this ��th double-byte scripts such as Kanji. This
field is intended for situations where all
character are char_bytes + 1 in size, such as a
feature in which a PicHandle is embedded as a
"character". For Kanji, not every character is a
double-byte so this field ��ll a��ays be zero.

max_chars — Not currently supported. Eventually
this ��ll be used for something fancy.

ascent, descent, leading — Define the style's
ascent, descent and leading values. (For Macintosh,
each value is obtained from the Toolbox call,
GetFontInfo).

NO��S:

1. You do not need to set these fields for
"normal" (non-custo�) styles because the
machine-specific portion of OpenPaige ��ll
initialise these fields according to the
composite style and font.

2. If you need to ��plement a "set extra leading"
feature, use top_extra and bot_extra ���ra.

shift_verb — This value is used only if
styles[sub_script_var] or styles[subscript_var]
are non–zero. The shift_verb can be one of ��o
values:

typedef enum
{

baseline_relative, �� Draw from
line's baseline

percent_of_style �� Draw
relative to percentage of baseline
};

For baseline_relative, values in
styles[sub_script_var] or styles[subscript_var]
are considered to be point (pixel) values; for
percent_of_style, the super/subscript point values
are computed as a percent (value of
styles[sub_script_var] or styles[subscript_var])
of the style's total height (ascent + descent +
leading). Example: If style's total height is 32
and styles[subscript_var] contained 50, the point
value to shift the text ��ll be 32 * 0.50, or 16.

class_bits — Contains a set of bits defining
specific attributes and behaviors for this style.
The current attributes supported by OpenPaige are
as follows:

#define CANNO��HIL���_B��
0x00000000 �� Can not highlight text of
this style

#define CANNO��BREAK
0x00000002 �� Chars can not break ��th
this
#define ��YLE_IS_CONTROL
0x00000004 �� Style is "control" type item
#define GROUP_CHARS_B��
0x00000008 �� All chars selected as one
#define ��YLE���RGED_B��
0x00000010 �� Style has been merged
#define ��YLE_IS_CU��OM
0x00000020 �� Style is understood only by

app
#define HIL���_RE��RIC��B�� 0x00000040
�� Can not select outside of style
#define CANNOT��RAP_B��
0x00000080 �� Can not wrap (for tables,
etc)
#define IS_NOT���X��B��
0x00000100 �� Data is not text at all
#define REQUIRES_COPY_B��
0x00000200 �� Text copy requires copy_proc
callback
#define NO_��AR��DRA��B��
0x00000400 �� Do not second-guess line
dra��ng
#define AC��VA��_ENABLE_B�� 0x00000800
�� Causes activate_proc to be called
#define CAN��UNDERLINE_B�� 0x00001000
�� The OS does not support underline
#define CANT��RANS_B��
0x00002000 �� Text can't transliterate etc
#define RIGH��E���B��
0x00004000 �� Text direction is R��
#define VER��CAL���X��B��
0x00008000 �� (unsupported - for)
#define ��X��LOCKED
0x00010000 �� (unsupported)
#define NO_EXTRA_SUPER_SUB 0x00020000
�� (unsupported)
#define ��BED_SUBS���B��
0x00040000 �� (for HER��S only)
#define NO_SAVEDOC_B��
0x00080000 �� Do not save this style_info
#define ��BED_IN���D_B��
0x00100000 �� Used internally by
embed_refs

Each of the above bits, if set, cause the follo��ng
(only the bits currently supported are explained):

CANNO��HIL���_B�� causes highlighting �ot to
show for the characters; even if the user does
a "Select All", text ��th this style attribute
��ll not highlight.
CANNO��BREAK is essentially a "non-breaking"
style; characters ��th this attribute ��ll not
break in the ��ddle (unless the line is too
large).

��YLE_IS_CONTROL causes the track-control low-
level function to be called when a "mouse"
click is received (see "Custo��zing OpenPaige"
).
GROUP_CHARS_B�� causes all text in this style
to be highlighted as one, i.e. a single click
selects the whole group.
��YLE���RGE_B�� gets set by OpenPaige in "mail
merge mode"; do �ot set this bit yourself.
��YLE_IS_CU��OM causes the text to be
invisible �� the standard display function is
used. In other words, all text ��th this
attribute ��ll only display if you have
provided your own display function.
HIL���_RE��RIC��B�� forces a click/drag on
this style to stay inside the boundaries of the
style.
CANNOT��RAP_B�� causes text �ot to wrap
regardless of ��dth.
IS_NOT���X��B�� tells OpenPaige the
character(s) aren't really text. If this is
set, the standard text measuring and dra��ng
functions do nothing (hence you would need to
set your own hooks for both functions).
REQUIRES_COPY_B�� causes the copy_text_proc
(hook) to get called for these character(s);
other��se OpenPaige does not call this hook.
NO_��AR��DRA��B�� disables the "second-
guessing" for fast character display. If this
bit is set, the whole text line is drawn
(instead of a partial line).
AC��VA��_ENABLE_B�� causes the
style_activate_proc to get called, other��se
that hook is ignored.
CAN��UNDERLINE_B�� informs the text dra��ng
function that the OS ��ll not display an
underline style (used for Kanji characters in
Macintosh). Obsolete!
CANT��RANS_B�� informs the "ALL CAPS" and
"small caps" functions that the text can't be
translated to upper/lower case. This bit ��ght
be ��portant for text that is not really text,
e.g. a pointer or memory reference.
RIGH��E���B�� indicates the writing direction
for the text is right-to-left.
NO_SAVEDOC_B�� causes this style_info not to
be included in pgSaveDoc(). One reason you
��ght want to do this is for special

applications that want to construct their own
styles or stylesheets ��thout saving
style_info to each file.

style_sheet_id — Contains a unique ID used by style
sheet support (see "Style Sheets").

small_caps_index — You should not alter this field;
it is used by OpenPaige when small_caps_var style
is set.

fg_color, bk_color — Define the foreground and
background color of the text. Both fields are
structured as follows:

typedef struct
{

unsigned short red; �� Red
composite

unsigned short green; �� Green
composite

unsigned short blue; �� Blue
composite

pg_short_t alpha;
�� Optional value (�achine dependent)
}

NO��: The backgrou�d colour applies to the text
background, not necessarily the ��ndow background.
For example, a line of text drawn ��th a b�ue
background colour on a white background ��ndow ��ll
result in a blue "stripe" of line height's size
��th the text foreground overlaying the stripe.

machine_var, machine_var2 — Do �ot alter these
values; they are used internally by HER��S Paige.

char���dth — On ��ndows, this becomes the f���dth
value when setting up a LOGFONT for font selection.

point — The point size for this style. This field
is a Fixed type, i.e., the high-order word of the
field is the integral part and the low-order word
the fractional part of the value, if any. For more
on setting point, see "Setting / Getting Point
Size" and "Changing point size".

left_overhang, right_overhang — These are a form
of indent for characters. These fields control how
far a style overhangs to the left and/or right, the
best example being italic that can overhang to the
right.

NO��: OpenPaige sets the default for these values
when the style is initialised.

top_extra, bot_extra — Contains extra leading, in
pixels, to add to the top or bottom of the style.

NO��: You should use these fields—�ot the
ascent/descent fields—for "add extra leading"
features.

space_extra — The fractional amount to add to each
space ��dth. This value is a Fixed value (high
order word is the integral part and low order word
the fractional part).

char_extra — The fractional amount to add to each
non-space character. This value is a "fixed"
fraction (high order word is the whole part and low
order word the fraction part) and can be used for
kerning.

NO��: This field is only supported on Macintosh if
Color QuickDraw exists.

user_id, user_data, user_data2 — Use these fields
for an arbitrary setting. These are of particular
utility for custo��sing styles.

future - an array of longs reserved for future
enhancement. Do not use these fields.

embed_entry, embed_style_refcon, embed_refcon,
embed_id, embed_object — Do not alter these
values; they are used by the ��XT-embed extension.
See chapter on "��bedding Non-Text Characters".

user_var — This can be used for anything. It is
intended mainly, however, for source code users who
want to append to the style_info record.

procs — This is a record of many function pointers
that get called by OpenPaige for dra��ng, text
measuring, etc. The array of functions literally
define the way this style behaves (OpenPaige ��ll

a��ays call one of these functions to obtain
information and/or to display text in this style).
These are the essence and key to ��plementing
special styles and text types. See "Custo��zing
OpenPaige".

maintenance, used_ctr — Both of these are used
only by OpenPaige for internal maintenance and must
not be altered (actually, you cannot alter them
anyway; when calling pgSetStyleInfo, bOpenPaige
ignores anything you put into these ��o fields).

User-defined styles, setting "invisible
markers"

A style_info is said to be user-de���ed if one or more
fields contain information understood only by the
application. Usually, in all other respects the style
looks and feels like any other OpenPaige style.

For example, your application ��ght want to "mark"
various sections of text ��th some special attribute,
but invisibly to the (human) user. You can set
invisible "marks" for various sections of text by
merely applying a style_info to the desired text ��th
any of the user fields set to something your app ��ll
understand. The user fields are user_id, user_data and
user_data2, each usable for any purpose whatsoever.

font_info

typedef struct
{

pg_char name[FON��SIZE];
�� "Name" of font

pg_char alternate_name[FON��SIZE]; ��
Alternate if first not found

short environs;
�� Machine-specific attributes

short typeface;
�� Typography class

short fa��ly_id;
�� Font ID code

short alternate_id;
�� Alternate ID code if bad font

short char_type;
�� Char type (�achine-specific)

long platform;
�� The platform this font originated

long language;
�� Language

long machine_var[8];
�� Machine-specific array

font_append_t user_var;
�� Arbitrary use
}
font_info, PG_FAR *font_info_ptr;

The font_info record is somewhat machine-dependent and
what should be placed in each field may depend on the
platform you are running.

When you set a font_info record, usually only the
name, alternate_name, and environs fields need be
changed; this is because OpenPaige ��ll initialise all
the other fields to their defaults when the font is
applied to a pg_ref.

One exception to this is setting a ��ndows font and you
require a special character set and/or special
precision information (see "Additional Font Info for
��ndows" belo�).

NO��: On Macintosh, the font_info.name should be a
pascal string ter��nated ��th the remaining bytes in
font_info.name set to zero; the font_info.environs
field should also be set to zero. For an example see
"Responding to font menu (�acintosh)".

NO��: On ��ndows, the font_info.name can be initially
set to either a pascal string or a cstring, ��th all
remaining bytes in font_info.name set to zero. Usually,
due to ��ndows program��ng conventions, you ��ll set
the name to a cstring. In this case, before passing the
font_info record to pgSetFontInfo, you must set
font_info.environs to NA��_IS_C��R.

CAU��ON: On ��ndows, OpenPaige converts font_info.name
to a pascal string and clears the NA��_IS_C��R bit
when the font is stored in the pg_ref. This is done
purely for cross-platform portability. This is
��portant to remember, because if you exa��ne the font
thereafter ��th pgGetFontInfo, the font name ��ll now
be a pascal string (the first byte indicating the
string length), not a cstring.

name - This should contain the name of the font.
This can either be a pascal string (first byte is
the length) or a cstring (ter��nated ��th zero).
However, the assumption is made by OpenPaige that
the string is a pascal string. Hence, you need to
set the environs field accordingly if name is a
cstring (see belo�).

alternate_name — This should contain a font name to
use as a second choice if the font defined in name
does not exist. If OpenPaige can't find the first
font, it ��ll try using alternate_name. If you do
not have an alternative, set alternate_name to all
zeros.

environs - Additional information about the font,
which contains the follo��ng bit (or not):

#define NA��_IS_C��R 1 �� Font name is a
cstring

All the other fields in font_info are initialised
by OpenPaige when you set a font.

NO��: Fill the font name ��th all zeros before
setting the string. This ��ll allow applications
more easily to shift be��een pascal strings and
cstrings (because a pascal string ��ll also be
ter��nated ��th a zero).

NO��: For your reference, on Macintosh, the
fa��ly_id ��ll get initialised to the font ID and
char_type ��ll get set to the font script code
(e.g., Roman, Kanji, etc.).

language — This ��ll contain the language ID for
the font. In ��ndows NT and 95, this contains the
langID and code page.

The remaining fields are not supported for any
particular purpose and ��ght be used for future
enhancements.

Additional Font Info for ��ndows

In certain cases, it is necessary to map certain
members of the font information to obtain the

appropriate character set and dra��ng precision. The
machine_var field in font_info is used for this
purpose, the first four elements of which are defined
as follows:

machine_var[PG_OU��PRECISION] should contain output
precision.
machine_var[PG_CLIP_PRECISION] should contain
clipping precision.
machine_var[PG_QUAL��Y] should contain output
quality.
machine_var[PG_CHARS��] should contain the
character set code.

Setting LOGFONT precision info

/* This code snippet shows the members of LOGFONT
you should map across to font_info: */
font��machine_var[PG_OU��PRECISION] = log_font ��
IfOutPrecision;
font��machine_var[PG_CLIP_PRECISION] = log_font ��
IfClipPrecision;
font��machine_var[PG_QUAL��Y] = log_font ��
IfQuality;
font��machine_var[PG_CHARS��] = log_font��IfCharSet;

par_info

struct par_info
{

short
justification; �� How text is justified

short direction;
�� Pr��ary text direction

short class_info;
�� Used to define para attributes

pg_short_t nu��tabs;
�� Number of active tabs

tab_stop
tabs[�AB_ARRAY_SIZE]; �� Tab stop information

long
style_sheet_id; �� Used for style sheet features

pg_fixed def_tab_space; ��
Default tab space

pg_indents indents;

�� Line spacing
pg_fixed leading_extra; ��

Extra leading of lines

pg_fixed leading_fixed; ��
Fixed leading (0 = auto)

pg_fixed top_extra;
�� Extra space at top

pg_fixed bot_extra;
�� Extra space at bottom

pg_fixed left_extra;
�� Extra space at left

pg_fixed top_extra;
�� Extra space at right

long user_id;
�� Can be used by app to ID custom para sizes

long user_data;
�� Add'l space for app if par is custom

long user_data2;
�� More space for app

long
partial_just; �� Partial justify (future
enhancement)

long

future[PG_FUTURE]; �� Reserved for future
enhancement

par_append_t user_var;
�� Arbitrary use

pg_par_hooks procs;
�� Function pointers

long maintenance;
�� Internal use

long used_ctr;
�� Internal use
}
par_info, PG_FAR *par_info_ptr;

Field descriptions

justification - The justification (alignment) for
the paragraph. This value can be any of the
follo��ng:

typedef enum
{

justify_left, �� Align left
justify_center, �� Align centrally

justify_right, �� Align right
justify_full, �� Fully

justify (pad spaces)
force_left, ��

Force left (no���thstanding writing direction)
force_right, �� Force right

(no���thstanding writing direction)
}

force_left and force_right are used to force an
alignment to one side or the other regardless of
the writing direction.

direction — Defines the writing direction (left to
right or right to left), and can be one of the
follo��ng:

typedef enum
{

right_left_direction = -1, �� Right-to-
left

syste��direction, �� System-default direction
left_right_direction �� Left-to-right

}

NO��: The direction parameter defines the writing
direction of the paragraph(s) affected by the
par_info style. In such paragraphs, bidirectional
scripts can exist such as English and Hebre�. While
each script has its own direction attribute, the
writing direction defines the point of origin for
all lines in the paragraph. If writing direction is
right-to-left, all text is aligned to the right; if
writing direction is left to right, all text is
aligned to the left. In both cases, however,
individual blocks of text can go either direction
relative to the text they are aligned to.

class_info — Contains various bit setting(s)
defining special attributes. Currently, the
follo��ng attribute bits are supported:

#define KEEP_PARS��OG��HER 0x0001 �� Keep
paragraphs on same page

#define NO_SAVEDOC_PAR 0x0200
�� Don't save par_info in pgSaveDoc()

nu��tabs, tabs — Define the tab stop(s). The tabs
field contains an array of tab_stop records and
nu��tabs contains the number of valid elements.
Tabs are described in "Tab Support".

style_sheet_id — Contains a unique ID for paragraph
style sheets (see "Style Sheets").

def_tab_space — Defines the default tab spacing
(�hen no preset tab stops exist). You can set this
to anything.

NO��: The initial (default) setting is taken from
pg_globals (see "Changing Globals" for more
information about pg_globals).

indents — These are the paragraph indentations; for
information about indents see "Set Indents" and
“Get Indents”.

spacing — Defines the line spacing for the
paragraph. This value is a ��xed-number Fixed type
in which the integral part is in the high-order
word and the fractional part in the low-order word.
This value is multiplied t��es the current line
height (ascent + descent) and the result becomes
the new height.

For example, to obtain 2*1 line spacing, the
spacing value should be 0x00020000. For 1.5*1
spacing, the value should be 0x00018000 (low-order
word is 1/2 of an unsigned short).

NO��: A spacing value of zero ��plies "auto"
spacing (lines spaced according to their style).
You would also get the same effect if spacing =
0x00010000.

leading_extra, leading_fixed — Both of these can
also control line spacing. The leading_extra field
is added to the line's height. The leading_fixed
field, if non—zero, is forced as the line height.
Both should never be set to non—zero at the same
t��e since that would make no sense.

top_extra, bot_extra, left_extra, right_extra —
These are all added to the top, botto�, left and
right of the paragraph, respectively.

NO��: These values are all pixel amounts (point)
and they are added to the paragraph's boundaries in
addition to everything else (in addition to
indentations and spacing, etc.). Use these fields
to obtain "space before" and "space after" for
paragraphs.

user_id, user_data, user_data2 — Your app can use
these fields for anything it wants. These come in
handy for custo��sing paragraphs.

partial_just, future — These are reserved for
future enhancement. Do not alter these fields.

procs - This is a record of many function pointers
that get called by OpenPaige for paragraph
formatting. The array of functions literally define
the way this format behaves. See "Custo��zing
OpenPaige".

user_var — This can be used for anything. It is
intended mainly, however, for source code users who
want to append to the par_info record.

maintenance, used_ctr — Both of these are used
only by OpenPaige for internal maintenance and must
not be altered (actually, you can't alter them
anyway ��th pgSetParInfo - OpenPaige s��ply ignores
anything you put into these ��o fields)

30.12 Creating a s��ple custom style

One of the most ��portant features of OpenPaige is the
ability to create custom styles. There are several
issues to be understood when doing custom styles. They
involve custo��sing how OpenPaige draws and measures
the text. This is accomplished by using hooks,
described in "Custo��zing OpenPaige".

However, here s��ple custom styles can be created by
changing just a few functions. The follo��ng example
shows how to create a custom style that draws a box
around some text. In this case, the only thing changing
is how the text is drawn.

First of all, I must set the text to my custom style
and install the hooks I ��ll need. Second, I show how
to initialize my style and my dra��ng hook. I even get
to use the default OpenPaige functions for s��ply
dra��ng the characters.

Other custom styles may have to use other custom hooks,
including measure_proc, but nearly every custom style
can be built changing only three:

1. The measure_proc. The (replaced) function must not
only measure the character ��dths correctly, it
must also fill in the types pointer (see
"measure_proc").

2. The text_dra��proc. The (replaced) function must be
able to draw the text on demand (see
"text_dra��proc").

3. The style_init_proc. The (replaced) function
probably needs to deter��ne the style's ascent,
descent and leading if that functionality for the
character set in question does not already exist
inherently in the OS. (See "style_init_proc").

NO��: Many ��provements could be made to this code,
such as dra��ng a single box around the text when boxes
are adjacent, setting the box so the offset on the left
and right of the style is not right next to the first
and last character, using the styles[var] amount for
various offsets or ��dths of the line or both, and
��plement scaling.

Set some text to a custom style (Cross
platfor�)

void SetBoxStyle (pg_ref pg)
{

style_info style={0}; �� or use pgInitStyleMask
style_info mask={0};
/* it is zero because I don't necessarily want to

set everything, only the procs I am interested in */
style.styles[box_var] = -1;
style.class_bits |= NO_��AR��DRA��B��;
info �� procs.init = box_init_proc;
info �� procs.draw = box_dra��proc;
mask.procs.init = (style_init_proc) -1;
mask.procs.draw = (text_dra��proc) -1;
mask.class_bits = -1;

mask.styles[box_var] = -1;

pgSetStyleInfo(pg, NULL, &style, &mask, best��ay);
/* text inserted using pgInsert is now my custom

boxed style */
}

Dra��ng a box around some text hook (Cross-
platfor�)

/* This does the actual box and text dra��ng. */
/* Note: this does not handle multiple custom styles
to do that we ��ll need to build our own
myMasterDrawProc ��th the major changes being 1) a
huge if/then for each styles [], 2) possibly the
order in which these are called, and 3) that the
pgDrawProc be called only once. */

static PG_PASCAL (void) box_dra��proc (paige_rec_ptr
pg, style��alk_ptr walker, pg_char_ptr data,
pg_short_t offset, pg_short_t length,
dra��points_ptr dra��position, long extra, short
draw��ode)
style_info_ptr original_style = walker �� cur_style;
pg_scale_factor scale = pg �� scale_factor; �� this
is not ��plemented

Point start_pt;
Point end_pt;

pgDrawProc(pg, walker, data, offset, length,
dra��position, extra, draw��ode);
/* OpenPaige's standard draw */
start_pt.h = pgLongToShort(dra��position �� fro�.h);
start_pt.v = pgLongToShort(dra��position �� fro�.v);
end_pt.h = pgLongToShort(dra��position �� to.h);
end_pt.v = pgLongToShort(dra��position �� to.v);

dra��a_box_around_rectangle (start_pt.h, start_pt.v
- original_style �� ascent + 1, end_pt.h, end_pt.v +
original_style �� descent - 1);
/* on Mac use FrameRect */
}

Figure out new line heights due to the box
(Cross platfor�)

�� This sets up the required info in the style
record

static PG_PASCAL (void) box_init_proc (paige_rec_ptr
pg, style_info_ptr style, font_ptr_info font)
{

register short distance;
pgStyleInitProc(pg, style, font); �� first

call standard proc
distance = style �� styles[box_var];
style �� ascent += distance;
style �� descent += distance

�� style �� right_extra += distance;
�� style �� left_extra += distance;

style �� class_bits |= NO_��AR��DRA��B��;
}

31 ��YLE SHE���

A style sheet in HER��S Paige is a text and/or
paragraph format that is "shared" by various characters
in a document. Although a style sheet contains the same
info as regular formats, affected text essentially
"points" to these styles. A change to a single style
sheet ��ll change every place in the text that uses
that style.

NO��: The style_info record structure is described in
"style_info".

31.1 New sheets

(short) pgNe��tyle (pg_ref pg, style_info_ptr
ne��style, font_info_ptr style_font);

Establishes a new style sheet and returns a unique ID
code for that style.

FUNC��ON RESU��: No text is changed from this function;
all that occurs is ne��style is added internally to
pg, style_font is added (if it does not already exist)
and assigned to the new style; the style is assigned a
unique number which can be referenced in subsequent
calls that affect such styles. The reference number for
the style ��ll never equal zero.

ne��style can contain anything that a regular text
style contains.

31.2 Remove style

(void) pgRemoveStyle (pg_ref pg, short style_id);

Removes the style sheet referenced as style_id.
��mediately after this call is made, style_id ��ll no
longer be valid.

However, the text is not affected. The style_info that
used to be a style sheet s��ply changes to a regular
style run item; locations in the text that are set to

style_id ��ll retain their styles but each occurrence
��ll no longer be linked ��th the style_sheet
reference.

31.3 Style count & "indexing"

(short) pgNu��tyles (pg_ref pg);
(short) pgNumParStyles (pg_ref pg);

Returns the total number of style sheets in pg;
pgNumParStyles() returns the total number of paragraph
style sheets.

short pgGetIndStyleSheet (pg_ref pg, short index,
style_info_ptr stylesheet);
short pgGetIndParStyleSheet (pg_ref pg, short index,
style_info_ptr stylesheet);

Returns the �th style sheet found in pg. The style
sheet to return is given in index (zero-indexed
quantity); pgGetIndStyleSheet() returns a regular
(text) style while pgGetIndParStyleSheet() returns a
paragraph style sheet.

Using these in conjunction ��th pgNu��tyles() and
pgNumParStyles() can provide "random access" to style
sheets existing in pg.

If the requested style sheet is found and stylesheet is
non-null, this style_info or par_info is initialised
to the settings of the sheet.

FUNC��ON RESU��: If index style sheet exists, its ID is
returned. If no such style sheet exists, zero is
returned.

31.4 Searching for a Style Sheet

short pgFindStyleSheet (pg_ref pg, par_info_ptr
compare_style, par_info_ptr mask);

This function returns the style sheet ID, if any, whose
style_info fields prec�se�y match compare_style. If no
match is found, zero is returned.

The mask parameter can be used to do partial or
selective comparisons. If mask is non-null, only the
style_info fields that are non-zero in this structure
are compared.

For example, to locate a style sheet that had a
specific value in style_info.user_id, clear the mask to
all zeros except user_id set to -1.

short pgFindParStyleSheet (pg_ref pg, par_info_ptr
compare_style, par_info_ptr mask);

This function is identical to pgFindStyleSheet except
in that it is used for paragraph style sheets.

31.5 Get, set, change a style in a
style sheet

(pg_boolean) pgGetStyle (pg_ref pg, short style_id,
style_info_ptr style);

Returns the style_info record belonging to style sheet
style_id. The style_id must be valid.

NO��: If you want to get the associated font, use
pgGetFontInfoRec.

If style_id is not a valid stylesheet ID, the function
returns FALSE and the style_info record is not set to
anything certain.

(void) pgChangeStyle (pg_ref pg, short style_id,
style_info_ptr style, font_info_ptr style_font,
short draw��ode);

Changes the style sheet style_id to the contents of
*style. All text is affected that is set to this style
sheet. Every character in the text that is set to this
style—or subset thereof—��ll change as follows: if the

style_info attribute is the same as the original
stylesheet, that same attribute changes to the new
setting. If the attribute is different (i.e. has been
changed by user), that attribute remains unchanged.

For example, suppose you created a style sheet for
Helvetica-Bold-Italic and applied that sheet to the
whole document. The user underlines a word (�aking it
Helvetica-BoldItalic-Underline), then you change the
style sheet to T��es-Italic. The underlined word ��ll
change to T��es-Italic but ���� reta�� t�e u�der���e.

If style_font is non-NULL, the font is also changed
(other��se the font already assigned to the style is
retained).

If draw��ode is non-zero, the text is redrawn in the
mode specified (see Draw Modes under section 2.11 for
more about the display modes for pgDisplay). In most
cases, draw��ode should be best��ay.

(void) pgSetStyleSheet (pg_ref pg, select_pair_ptr
selection, short style_id, short draw��ode);
(pg_boolean) pgGetStyleSheet (pg_ref pg,
select_pair_ptr selection, short PG_FAR *style_id);

The pgSetStyleSheet function changes all the text in
the specified selection to style sheet reference
style_id.

NO��: This differs from pgChangeStyle since, in this
case, you are changing a selection range to assume the
format of a specific style sheet—you are not changing
the style sheet itself.

The selection parameter operates in the same way as all
functions that accept a select_pair (for more
information about the select_pair record, see section
8.2, Selection Range).

If draw��ode is non-zero, the text is redrawn in the
mode specified (see Draw Modes under section 2.11 for
more information about display modes for pgDisplay). In
most cases, draw��ode should be best��ay.

To find out what style sheet, if any, is applied to an
area of text, use pgGetStyleSheet.

FUNC��ON RESU��: pgGetStyleSheet returns the style
sheet belonging to the specified selection range. On
return, if *style_id contains zero, no single style
sheets affect the selected text, other��se the
stylesheet ID is placed in *style_id. Additionally, if
the function result is TRUE, the style sheet is
consistent throughout the selection range.

For more on styles and masks see “Changing Styles”.

NO��: If the function returns TRUE, yet *style_id is
zero, that means there are no style sheets anywhere
��thin the selection. But if the function returns FALSE
and *style_id is zero, there are some style sheets
��thin the selection but they are not consistent.

(short) pgNewParStyle (pg_ref pg, par_info_ptr
ne��style);
(void) pgRemoveParStyle (pg_ref pg, short style_id);
(short) pgNumParStyles (pg_ref pg);
(short) pgGetParStyle (pg_ref pg, short style_id,
par_info_ptr style);
(void) pgChangeParStyle (pg_ref pg, short style_id,
par_info_ptr style, short draw��ode);
(void) pgSetParStyleSheet (pg_ref pg,
select_pair_ptr selection, short style_id, short
draw��ode);
(pg_boolean) pgGetParStyleSheet (pg_ref pg,
select_pair_ptr selection, short PG_FAR *style_id);

All of the above functions are identical to their
counterparts, but are used for paragraph format style
sheets. HER��S Paige maintains a separate list for
paragraph formats.

��CH NO��: Why is the style_sheet_id "negative"?

I was walking through the style_info records
in the pg_ref and noticed that some of them
have negative style_sheet_id values. How/why
does this happen?

If your pg_ref has any stylesheets applied to text,
when you change any of that text to additional style
attributes, HER��S Paige negates the style_sheet_id.
This is how it keeps track of "offspring" style sheets;
upōn closer inspection you ��ght notice that the

"parent" style sheet ID is the compl��ent (negation) of
this value, i.e. of parent sheet is 17, a
style_info.style_sheet id of -17 was originally style
number 17 before changes were made.

��CH NO�� :Can I build style sheets from
scratch?

Would it be possible for me to set up the
style_info records myself and put my own
style_sheet id, then use pgAddStyleInfo, or
would this cause problems for HER��S Paige?

Actually, I do not think that method ��ll work… and in
fact after investigating the source code more carefully
there are some problems ��th my suggestions to
��plement "global" stylesheets.

First, I'll outline what the problems are and then I'll
suggest workarounds.

Problem number 1 is the fact that HER��S Paige
maintains style sheet ID's in ways that you ��ght not
expect. For example, to keep track of "clone"
stylesheets (sheets that get altered slightly but still
affected by global changes), HER��S Paige negates the
stylesheet ID so it knows who the "parent" style is.
Due to this, I have a feeling your pg_ref would get
messed up if you start assigning your own ID's.

Problem number 2 has to do ��th a field in style_info
called used_ctr. This field gets incremented for every
occurrence of that style in the text stream and gets
decremented every t��e that style is deleted from the
text. Once it decrements to zero, HER��S Paige ��ll
de�ete the style_info record. For "stylesheet" info
records, however, it starts the used_ctr at 1 so it
doesn't get deleted, except at the moment of calling
the delete-stylesheet function, in which case the
used_ctr is decremented so it deletes once no text is
using it.

The reason no. 3 is a problem is that HER��S Paige
forces this field to zero when you add new style_info
records, even if you only use the lower-level
pgAddStyleInfo.

Workarounds

I think you ��ll be better off by literally adding
stylesheets the "normal" way (e.g. pgNe��tyle,
pgChangeStyle, etc.), also don't try to force your own
"ID" into the target pg_ref.

When I say don't "force your own ID" I mean just let
HER��S Paige assign ID's to the stylesheets. That
doesn't mean you can't have your own ID's (such as your
resource ID's) and it also does not mean you even need
to do anything ��th the stylesheet ID's that HER��S
Paige returns. But, I wouldn't mess ��th stylesheet_id
in the style_info records.

In light of this, I would slightly modify my
suggestions in the last message as follows:

To find out if a stylesheet already exists in a
pg_ref, use pgFindStyleSheet to do an actual
comparison against your style(s).
To change a stylesheet "globally" (for example,
opening a doc and applying a changed global
stylesheet to the opened doc), also use
pgFindStyleSheet to see if it exists, then change
it by referring to it ��th the "local" ID HER��S
Paige returns from that function.
To make it really solid, I would use one of the
refcon fields in the style_info record to store my
own "ID" numbers to identify exact style sheets.
Specifically, the fields you can choose from in
style_info for this purpose are user_id,
user_data, and user_data2. Remember that HER��S
Paige sees no significance on any of these fields,
but they can mean something to your app—original
resource ID's for example. Note that
pgFindStyleSheet allows a mask to compare only
certain fields. An interesting approach would be to
slap in your own "ID" in one of the user_xxx
fields, then s��ply compare that one field for
locating stylesheets in question.

As for not using an "invisible" pg_ref, that's no
problem if you do something along the line of my above
suggestions.

��CH NO��: Building paragraph styles
from scratch

When creating a Paragraph Style Sheet, does the
par_info record need to be filled out
completely?

Yes.

If so.... how does one fill in the fields in
the par_info record such as style_sheet_id,
procs, maintenance, and used_ctr?

This is actually ultra-s��ple and takes only one line
of code. You s��ply begin ��th a "default par_info"
record that you get from HER��S Paige globals. If your
potential style sheet is called MyParStyleSheet, you do
the follo��ng to initialise:

par_info MyParStyleSheet;
MyParStyleSheet = paige_globals.def_par;

The paige_globals is of course your pg_globals struct

given originally to pgInit. The above statement copies
the default paragraph style, including all the default
hooks, etc., into your paragraph style. Furthermore
this method guarantees compatibility ��th any future
versions (even if we add stuff to par_info such as new
hooks, your style ��ll get initialised correctly).

Does the paragraph style sheet mechanism ignore
[some] fields?

I think it ��ght ignore style_sheet_id in this case and
I know it a��ays ignores used_ctr and maintenance. But
that shouldn't matter if you do the above.

31.6 "Named" Styles

"Named" styles differ from HER��S Paige's ordinary
style sheets by combining both style_info and par_info
style sheets into one, composite format that can be
applied to the document. The composite style sheet can
be given a name, and can be applied by calling the
appropriate HER��S Paige function using the name only.

Functions

long pgNewNamedStyle (pg_ref pg, pg_char_ptr
stylename, const style_info_ptr style, const
font_info_ptr font, par_info_ptr par);

Creates a ne�, named style sheet and keeps the
resulting style in pg.

The stylename parameter is the name of the style; this
is a cstring and can be from 1 to 64 bytes long
(including the ter��nating null character). If the
same, exact named style already exists it is replaced
by this style.

The style, font, and par parameters define the text
style, font and paragraph formats, respectively.
However, any of these parameters can be NULL, in which
case only the non-NULL attributes are applied.

For example, a NULL par parameter indicates that only
text formatting (not paragraph formatting) ��ll be
change when this stylesheet is applied to text. If
style is NULL, only font and/or par would be applied;
if font is NULL, the style (if non-NULL) is applied
using the current font of the targeted text.

Creating a new named style sheet does not affect the
document until you apply it to one or more characters
using the functions listed belo�.

A value is returned from this function, which ��ll be
an "index" number, identifying this style, that you can
use ��th some of the functions listed here that require
an index value. This index number is optional; you can
ignore it and still apply the style sheet to the text
by using its name.

long pgAddNamedStyle (pg_ref pg, pg_c_string_ptr
stylename, const short style_id, const short
par_id);

This function does the same thing as pgNewNamedStyle
except that existing style sheet ID number(s) are
provided instead of style_info and par_info records.

If the named style already exists, style_id and par_id
replace the style and paragraph styles.

A value is returned from this function, which ��ll be
an "index" number, identifying this style, that you can
use ��th some of the functions listed here that require
an index value. This index number is optional — you can
ignore it and still apply the stylesheet to the text by
using its name.

void pgApplyNamedStyle (pg_ref pg, select_pair_ptr
selection, pg_char_ptr stylename, short draw��ode);

The style sheet identified by stylename is applied to
the text ��thin the specified selection. If selection
is NULL, the current selection is used. Text is
redrawn using the draw��ode parameter (or not redrawn
if draw��ode �� dra��none).

If stylename does not exist, this function does
nothing.

Since stylename represents a composite style (text and
paragraph), each of them get applied differently. If a
text style (style_info) is part of the style, only the
characters ��thin the selection are changed; if a
paragraph format (par_info) is part of the style, the
whole paragraph(s) ��thin the selection are changed.

Hence, if you want to apply the style_info to entire
paragraph(s) you must provide a selection range that
covers the paragraph(s), other��se you may not get the
expected results.

void pgApplyNamedStyleIndex (pg_ref pg,
select_pair_ptr selection, long index, short
draw��ode);

This is identical to pgApplyNamedStyle() except the
style sheet is identified by its index number (the
value returned from pgNewNamedStyle.

pg_boolean pgGetAppliedNamedStyle (pg_ref pg,
select_pair_ptr selection, pg_char_ptr stylename);

Returns the named style, if any, that is currently
applied to the specified selection.

If there is indeed a named style applied, the name is
returned in stylename.

NO��: The selection range can have other style(s)
applied, in which case pgGetAppliedNamedStyle() ��ght
still return TRUE if the text also contains the style
sheet.

long pgNumNamedStyles (pg_ref pg);

Returns the number of named style sheets in pg. The
number of named stylesheets is s��ply the number you
have created; it does not necessarily mean any of them
are applied to any text in the document.

pg_boolean pgGetNamedStyle (pg_ref pg, long
named_style_index, named_stylesheet_ptr
named_style);

Returns the named style record for named_style_index.
The index is any value be��een 1 and
pgNumNamedStyles().

If the style sheet exists, the named_style record is
initialised and the function returns TRUE. If
named_style is NULL, the function merely returns TRUE
if named_style_index is valid. The named_style
structure is defined as follows:

struct named_stylesheet
{

pg_char name[FON��SIZE];
short stylesheet_id;
short par_stylesheet_id;

};

The stylesheet_id and par_stylesheet_id are the style
and paragraph stylesheets, respectively. If either are
zero they are not a part of this composite style.

long pgGetNamedStyleIndex (pg_ref pg, pg_char_ptr
stylename);

Returns the index value for style sheet stylename, if
one exists. This ��ll be a number be��een 1 and
pgNumNamedStyles() if stylename was found; else, zero.

void pgDeleteNamedStyle (pg_ref pg, long
named_style_index);

Deletes the named style indicated by named_style_index.
The "index" value can be anything be��een 1 and
pgNumNamedStyles().

NO��: The text is not affected by this function, even
if a style is deleted that has been applied to one or
more characters. (�he characters ��ll still retain that
style until some other action changes their format).

void pgRenameStyle (pg_ref pg, long
named_style_index, pg_char_ptr style_name);

Renames the style indicated by named_style_index to a
new name given as style_name. The index value can be
anything be��een 1 and pgNumNamedStyles().

32 ��YLE WALKERS

32.1 Walker record structure

The follo��ng record structure is passed to certain
low-level hooks (and can also be used for complex style
and format manipulations):

HER��S Paige uses this structure to "walk" through a
run of style (including paragraph styles). In other
words, given a starting position in text, HER��S Paige
��ll initialise a style��alk to reflect that position's
style, font and paragraph format; then, by calling
special "style walker" functions, the style information
can increment or decrement so the current formatting is
a��ays known. The purpose of the style��alk method is
to avoid the necessity to constantly look up the style,
font or paragraph info while walking through a series
of text bytes.

From top to botto�, each field can be described as
follows:

current_offset — Indicates the current, absolute
offset (from beginning of text) in the pg_ref.

cur_style — A pointer to the curre�t style_info
record.

cur_par_style — A pointer to the curre�t par_info
record.

cur_font — A pointer to the curre�t font_info
record.

next_style_run — A pointer to the �ext style_run
record for styles. To deter��ne the number of bytes
from current position to next style, the formula
is:

style��alk.next_style_run �� offset -
style��alk.current_offset;

next_par_run — A pointer to the �ext style_run
record for paragraph styles. To deter��ne the

number of bytes from current position to next
paragraph style, the formula is:

style��alk.next_par_run �� offset -
style��alk.current_offset;

prev_style_run — A pointer to the prev�ous (or
"current") style_run record for styles. To
deter��ne the total number of bytes for this style
(number of bytes this style applies to), the
formula is:

style��alk.next_style_run �� offset -
style��alk.prev_style_run �� offset;

prev_par_run — A pointer to the prev�ous (or
"current") style_run record for paragraph styles.
To deter��ne the total number of bytes for this
paragraph style (number of bytes this paragraph
style applies to), the formula is:

style��alk.next_par_run �� offset -
style��alk.prev_par_run �� offset;

style_base — A pointer to the first style_info
record (element 0 of style_info array). This is
used to index the style_info records quickly.

par_base — pointer to the first par_info record
(element 0 of par_info array). This is used to
index the par_info records quickly.

font_base — A pointer to the first font_info
record (element 0 of font_info array). This is used
to index the font_info records quickly.

last_font — Contains the font index number for the
pointer at cur_font. The purpose of this is to
avoid reïnitialising cur_font for every style
change if the font remains the same.

t_length — The tota� length of text for the pg_ref
associated to this style��alk.

super��pose — Used for a temporary workspace when
building a subset of style_info based on
super_��pose_var, all_caps_var, small_caps_var or
all_lower_var.

32.2 Note on style_run records

The last element in a style_run array is a "dummy"
entry whose offset field ��ll be greater than the total
text size of the pg_ref. For example, if the total text
size of a pg_ref is 100 bytes, the final element in the
array of style_run records ��ll contain a value in
style_run.offset of > 100.

Hence, if you are exa��ning a walker to deter��ne the
amount of text that applies to a style, be sure to
account for this.

For example, if walker.next_style_run �� offset is
greater t�a� walker.t_length, use walker.t_length in
your calculations. The same is true for
walker.next_par_run.

32.3 Walker Functions

HER��S Paige provides the follo��ng functions to
support a style��alk record:

Prepare style walk

(void) pgPrepareStyleWalk (paige_rec_ptr pg, long
offset, style��alk_ptr walker, pg_boolean
include_pars);

To initialise a style��alk record, call
pgPrepareStyleWalk. The offset parameter should
contain the starting text offset (relative to the start
of all text). When this function returns, the
style��alk pointed to by walker ��ll be initialised to
the styles of offset.

Once you are through using the style��alk, make one
more call to pgPrepareStyleWalk, but pass NULL for
walker; this tells the HER��S Paige code you are

through using the fields. Every pgPrepareStyleWalk must
eventually be ba�a�ced ��th a second call ��th NULL.

The purpose of the include_pars parameter is to enhance
the speed when walking through style runs, but the
caller does not care about paragraph format runs: if
include_pars is FALSE, pgPrepareStyleWalk ��ll only
initialise the walker for style runs (not paragraph
formats)—in which case all paragraph format-related
fields in the walker ��ll be null pointers. If
include_pars is TRUE then all paragraph format runs
��ll be included. Generally, if the intention is to
exa��ne only style_info runs, include_pars should be
FALSE.

Using pgPrepareStyleWalk

style��alk walker;
pgPrepareStyleWalk(pg, 0, &walker);
�� style��alk code goes here
pgPrepareStyleWalk(pg, 0, NULL);
�� tells HER��S Paige I'm through

This function advances the styles in walker by amount
bytes. The amount parameter can be negative, in which
case the styles are decre�e�ted.

All this does is reset the fields in walker to reflect
the styles that apply to the current text position (in
walker) + amount. If the same style, font and
paragraph format applies to all text, you would keep
getting the same answers regardless of the value in
amount. The function result from pgSe��alkStyle returns
TRUE if the style has changed from the previous
setting. For example, if the style applied to the
current text position (before pgSe��alkStyle) is Plain,
and calling pgSe��alkStyle now sits on text that is
Bold, the function returns TRUE.

Walk next/previous style

(pg_boolean) pgWalkNextStyle (style��alk_ptr
walker);

(pg_boolean) pgWalkPreviousStyle (style��alk_ptr
walker);

These function advance walker forward to the next or
previous text style, respectively, and, if appropriate,
to the next or previous paragraph style. The amount
from the current position to the next text style is
passed to PgWalkStyle for amount. It is the
developer's responsibility to deter��ne that there
really �s another style before making this call.
(Another style exists if walker.next_style_run ��
offset is less than walker.t_length). The function
result from pgSe��alkStyle returns TRUE if the style
has changed from the previous setting. For example, if
the style applied to the current text position (before
pgSe��alkStyle) is Plain, and calling pgSe��alkStyle
now sits on text that is Bold, the function returns
TRUE.

Set walk style

(pg_boolean) pgSe��alkStyle (style��alk_ptr walker,
long position);

This function sets all fields in walker to reflect the
styles that apply to position. The position parameter
is absolute, �.e. it is the amount in bytes from the
beginning of all text. The result of this function is
identical to pgPrepareStyleWalk except walker must
already be initialised. The function result from
pgSe��alkStyle returns TRUE if the style has changed
from the previous setting. For example, if the style
applied to the current text position (before
pgSe��alkStyle) is Plain, and calling pgSe��alkStyle
now sits on text that is Bold, the function returns
TRUE.

33 ��NDO�� CHARAC��R ��DTHS

HER��S Paige contains a low-level function you can use
to force specific character ��dths for any given text
format.

For example, a cross-platfor�, HER��S Paige-based
application ��ght need to render exact, identical
placement of characters drawn in the same font be��een
Macintosh and ��ndows. As most developers realise, the
subtle differences be��een fonts, even be��een fonts
that are supposedly the same fa��ly and type, ��ll not
a��ays render the same text ��dths be��een platforms,
or be��een changing resolution or printers.

The follo��ng function has been created to help ��th a
solution:

void SetFontChar��dths (pg_ref pg, style_info_ptr
style, int PG_FAR *char��dths);

This function causes the rendering of all text dra��ng
in style to match pre-deter��ned character ��dths
defined in char��dths.

The char��dths table must be a pointer to 256 int
values, each element must correspond to that same
ordinal value of the style's character set. For
example, char��dths[0] represents the ��dth of a null
(0) character; char��dths[' '] represents the ��dth of
a space character, char��dths['A'] represents the ��dth
for an "A" character, etc.

NO��: The character table applies only the precise,
composite text format represented by the style
parameter. This includes the associated font_info
record (�hich is defined by the value in style ��
font_index).

After this function is called, any text that is drawn
in the precise format represented by style ��ll be
rendered using the ��dths in char��dths.

NO��S:

1. The function prototype for SetFontChar��dths() is
defined in pgtraps.h.

2. SetFontChar��dths() makes a copy of the character
��dths; hence, you do not need to keep its array of
int values around.

3. The pg parameter is required to have access to
HER��S Paige globals as well as access to a font
table (unique to the pg_ref). However, the
character table you set becomes universal and
global for all pg_refs that use exactly the same
style.

34 FILE HANDLERS

CAU��ON: Nearly every file input/output issue can be
addressed by referring to chapter 22, File Standards,
Input, and Output. Rarely ��ll a developer need this
chapter on File Handlers.

In fact, if you are looking to this chapter to help
solve an input/output issue, you should probably
contact Tech Support to see if it is absolutely
necessary. In nearly every case, the content of chapter
22 (see above) ��ll be sufficient to handle file saving
and retrieving.

34.1 File Sub-system

The basic ingredients necessary to achieve the feature
set listed above are:

1. Documents are saved exclusively as a series of
components, where each component contains a
standard "header" identifying the data type and
length followed by the data, and

2. HER��S Paige structures are saved and read as a
series of component values, never as a single
structure. Hence, upward compatibility and even
backward compatibility becomes possible since every
version reads only the field(s) it understands.

3. Numbers (or relative addresses) are stored as
hexadec��al characters.

4. For specialized cases that require the application
to bypass normal sequential i/o ��thin a data
component, an alternate read and write function can
be privately assigned to that data component.

Data Components

A HER��S Paige document is saved to a file as a series
of data components, each component being independent of
the other. It does not matter what order they are saved
(or what order they are read when the file is open) and
it does not matter if strange or unrecognized
components are embedded anywhere in the file strea�.

Every component consists of:

A header defining the data type and its length

The data, which ��mediately follows the header

When a file is "opened" and each component is scanned,
if HER��S Paige recognizes the data type (in the
component header) it processes the information; if it
does not recognize the data type it can s��ply skip
over it. Thus, compatibility be��een versions,
platforms and applications become possible since no
single unknown component can throw HER��S Paige for a
spin or crash the application.

NO��: The term ���e is being used here only to describe
sequentially stored data. This does not a��ays ��ply a
physical file on disc. An HER��S Paige "file" can just
as well be a block of memory such as the system scrap
or "clipboard" or it could be a sequence of bytes sent
over a mode�, or any other type of medium that ��ght
support data transfer.

34.2 HER��S Paige "Handler"
Functions

How File Data is Recognized

The term �a�d�er is used here to describe a function
which handles reading or writing a specific data
component. ��thin HER��S Paige, there are specific
functions to handle each piece of data from a HER��S
Paige object; a set of pointers to these functions are
maintained using the follo��ng record:

typedef struct
{

pg_file_key key; �� Parameter
file key

pg_short_t flags; �� Internal use
pg_handler_proc read_handler; �� Called to

handle "read" data
pg_handler_proc write_handler; �� Called to

handle "write" data
file_io_proc read_data_proc; ��

To read data
file_io_proc write_data_proc; ��

To write data

}
pg_handler, PG_FAR *pg_handler_ptr;

HER��S Paige maintains an array of pg_handler,
essentially one element for each data component that
can be saved to a file. The key field in the pg_handler
record contains a unique code that is included in the
data component for which the handler is responsible.

write_handler and read_handler — contain pointers to
functions that ��ll process the data component that is
transferred to or from the file, respectively.

Both handler functions are declared as follows:

PG_PASCAL (pg_boolean) pg_handler_proc
(paige_rec_ptr pg, pg_file_key key, memory_ref
key_data, long PG_FAR *element_info, void* aux_data,
long *unpacked_size);

When a pg_handler_proc is called, pg contains the
record structure of the HER��S Paige object being
written (or read into). The key parameter ��ll contain
the key code that ��ll be written to the data component
header (if writing) or the key code that has been found
in the header (if reading). The key ��ll be identical
to the value found in the pg_handler associated ��th
this function.

key_data — is a memory_ref (�emory allocation) that
must be filled in ��th data to write (�hen writing) or
contains the data that has been read (�hen reading).

element_info — parameter is an optional value that can
be included in the header when writing and ��ll be read
and provided to this function when reading; aux_data is
used by HER��S Paige internally to provide information
for some of the standard handlers (aux_data is ignored
for all "custom" handlers added to the pg_handler list
by the app) — see the Table "Standard Handlers", which
describes what each of these parameters ��ll hold for
standard handlers.

unpacked_size — parameter is a pointer to a long which
the handler function must set to the actual (physical)
size of the data being read or written, in bytes. This
may differ from the byte size in key_data.

For example, suppose a special read handler is used for
compressed text (ASCII text compressed in some way).
The size of key_data ��ght be much smaller than the
uncompressed text size that is inserted into the
pg_ref. In this case, *actual_size should be set to
the uncompressed size, since it is the "real" size of
the data.

For writing, *actual_size should be set to the original
size of the data that ��ll be written to the file. In a
s���lar example of compressed text, *actual_size in the
case of a write handler should be the uncompressed size
of text (text size before it is compressed into
key_data).

FUNC��ON RESU��: Both functions must return TRUE if it
is through handling this key.

NO��: A TRUE is the usual and normally expected
response; the purpose of a possible TRUE or FALSE
result is for special read/write cases where the same
key is handled more than once. A FALSE result
essentially tells HER��S Paige to call the handler
function again (see “Repetitive Handler Loops" belo�).

CAU��ON: For s��ple read or write handlers, be sure to
return TRUE or an endless loop can result! See
Repetitive Handler Loops under section 34.2.

Read and Write Data Functions

The read_data_proc and write_data_proc contain the
function that ��ll physically read the data to be
processed by the handler function or to write the data
processed by the handler function, respectively. For
"normal" HER��S Paige data components, these ��ll get
set to the standard i/o function, but either can be
changed by the application for custom data transferring
that is local and private to the respective component.

Writing

When writing to a file, each individual "handler"
function is called to write its own data component.
This is fairly straightforward because HER��S Paige
s��ply walks through the list of available pg_handler
records and calls each write_handler function, one at a
t��e.

Reading

When reading a file, if the component is recognized
(i.e., if HER��S Paige can find a pg_handler that
contains the same key as found in the component
header), the handler is called to process the data.

For example, when a file was saved, the write handlers
typically saved blocks of text, style records,
paragraph formats, font records, etc., all as
individual components, each ��th its own code (from the
key field in its pg_handler record) to identify the
data type. When this file is "opened", the components
are read, one by one; if the data type is recognized,
which is to say if a pg_handler record can be found
that contains its code, its read_handler function is
called to process the data; if the type is not
recognised, i.e. if no handler can be found to match,
it is skipped.

This s��ultaneously guarantees future compatibility
since no single data element involves hardcodes
recognition and allows applications to save their own
data structures by installing their own pg_handlers. If
some other application or platform read the file, the
unrecognized data components are s��ply skipped ��th no
adverse effect!

Repetitive Handler Loops

In certain situations, it may be required for HER��S
Paige to call the same read or write handler more than
once.

An example of this would be saving a huge data
structure by breaking it into smaller components,
writing each component as a separate "key."

One way to accomplish this is to return FALSE from a
write handler which results in the same handler
function to get called again; HER��S Paige ��ll keep
calling the handlers until TRUE is returned.

Additionally, the value set (by you) in *element_info
��ll remain unchanged be��een repetitive read-handler
calls, so you can use that feature to know what to do
(or where you are in the data, etc.) for each
repetitive loop. The first t��e the handler function

gets called, HER��S Paige ��ll set *element_info to
zero.

Repetitive Write Handlers

Writing more than one data component using the same
write handler is accomplished in the same way as
repeating read handlers (by returning FALSE and using
*element_info).

However, when using a write handler in this fashion, it
may be ��portant to observe the follo��ng:

The value your write handler places in
*element_info ��ll be what gets written to the data
component's header. Later when your read handler is
called, the same value in *element_info that was
associated ��th the same data component ��ll be
given to you.
Remember that your data component is written after
you return from the write handler (�hereas data has
already been read when a read handler is called).
While this may seem obvious, it could prove to be
an ��portant point (see next item belo�).
When you return from your write handler, HER��S
Paige ��ll not write any additional data if the
data component you just processed has a byte size
of zero. This is an ��portant "feature" since you
can ter��nate the repetitive loop if there is no
more data to write by setting key_data to zero size
and returning TRUE.

For example, you could set up the first data component
in a series of (potentially) many and return FALSE
(indicating you want to get called again). On the
subsequent call, however, you discover there are no
more data components to be written; therefore, you can
s��ply call Se��emorySize(key_data, 0) and return TRUE
indicating you are through.

34.3 Installing Handlers

NO��: If you ��ll s��ply be saving HER��S Paige
documents in the standard manner ��thout any additional
data, you may skip this section completely.

The most basic method of saving an HER��S Paige
document is to use only the standard, "built-in”

handlers. If that is all your application needs to do
(if you s��ply want to save HER��S Paige objects ��th
no special data types or custom handlers), you do not
need to install any handlers as the defaults ��ll be
initialised automatically.

If you need to save or read additional data types, you
can install your own handler(s) by calling the
follo��ng function:

(void) pgSetHandler (pg_globals_ptr globals,
pg_file_key key, pg_handler_proc read_handler,
pg_handler_proc write_handler, file_io_proc
read_data_proc, file_io_proc write_data_proc);

globals - must point to the same structure given to
pgInit.

key — is the handler ID number you ��sh to install;
this can be one of the predefined handler keys or
it can be a custom ID specific to your application.

read_handler and write_handler — should contain a
pointer to a valid pg_handler_proc function, or
NULL. These are the functions that ��ll get called
to handle data components that have been read or
components that are to be written, respectively. If
either parameter is NULL then the existing function
for that key, if any, is left unchanged (or, if no
handler yet exists for that key the standard, i.e.,
default, function is assumed). For example, to
change only the read handler for a specific key,
you would pass a pointer in read_handler and NULL
for write_handler.

read_data_proc and write_data_proc — should be
either a NULL pointer, or point to a valid
file_io_proc (see section 34.5, The file_io_proc).
If non-NULL, the respective function ��ll get
called to physically read or write the data to the
file for that key; if NULL, the existing I/O
function for that key remains unchanged (or, if no
handler yet exists for that key the standard, i.e.,
default, function is assumed).

NO��: Setting a handler that already exists s��ply
replaces the function pointers in that handler per

the parameters given above; if the handler does not
exist, it is added.

If you want to get a copy of an existing handler,
call the follo��ng:

(pg_error) pgGetHandler (pg_globals_ptr
globals, pg_handler_ptr handler);

globals — must be a pointer to the same structure
given to pgInit.

handler — parameter must point to a pg_handler
record (cannot be null); however, you only need to
set the key field for the handler you ��sh to get a
copy of. When the function returns, a copy of the
read_handler and write_handler ��ll be put into
the handler record provided.

If the handler is not found (if no existing handler
matches ��th the value you put in the pg_handler's
key field), NO_HANDLER_ERR is returned.

The follo��ng is a list of the standard handler "key"
codes; if you want to read and write special data using
your own unique code, you should a��ays define it at
least greater or equal to the #define
CU��O��HANDLER_KEY.

CONTROL��OD_B�� is used mainly ��th "arrow" keys. This
causes the selection to advance to the next word (right
arro�) or to the previous word (left arro�).

�� Macintosh-specific keys

typedef enum
{

mac_pict_key = PLA��OR��SPECIFIC_KEY, ��
Mac Pictures

mac_control_key,
�� Mac Control

mac_sound,
�� Sound record

mac_quickt��e,
�� Quickt��e Pic

mac_print_key,

�� Mac print record
mac_rgb_key,

�� RGBColor
mac_code_rsrc,

�� Mac code resource
mac_quickdra�,

�� QuickDraw object
mac_custo��object,

�� Custom object
mac_dsi_extend1,

�� Reserved DSI 1
mac_dsi_extend2

�� Reserved DSI 2
};
#define CU��O��HANDLER_KEY(PLA��OR��SPECIFIC_KEY +
1024)
�� App can use this for keys.

key codes can be any 16-bit value but must be positive
numbers.

NO��: Contact regarding registering keys which you ��sh
to make public ��th . ��ll assist you in assigning
numbers which ��ll prevent duplication be��een
applications. Those wanting to read custom data �ust
use the author signature settings.

When used against keys, the author ��ll let you know
when you have your own document and not some other
app's. See section 34.14, Application Signature.

Removing Handlers

To completely remove a handler, call the follo��ng:

(pg_error) pgRemoveHandler(pg_globals_ptr globals,
pg_file_key key);

This function removes the handler indicated in key. If
no such handler exists, the function returns
NO_HANDLER_ERR.

Setting/Resetting Standard Handlers

If you want to restore the list of pg_handlers to the
defaults, call the follo��ng:

(void) pgInitStandardHandlers (pg_globals_ptr
globals);

globals is a pointer to the same structure given to
pgInit.

This function reinitialises the list of pg_handlers to
the defaults, and it ��ll remove all custom handlers
that have been installed.

The usual reason for calling pgInitStandardHandlers is
to remove all custom handlers you have installed and/or
to restore any you ��ght have deleted.

You do not need to call pgInitStandardHandlers if you
have not installed, changed or deleted any handlers,
nor do you need to call pgInitStandardHandlers if you
want to leave the handlers as-is throughout the
application session.

34.4 Reading certain data only

This feature is for using HER��S Paige to open only a
few file keys in a document. For example one ��ght want
to open format and shapes of a document, but not the
text, or perhaps display the text using a different
format. This is used to ��plement stationery or
templates.

HER��S Paige handles such partial reads as follows:

Reading only certain data elements—but not all—is
possible by passing a list of file keys to pgReadDoc
that specify which elements to include for reading;
HER��S Paige ��ll skip over all other keys that are not
in this list.

However, reading only certain data components from an
HER��S Paige file ��ght require some kno��edge of
dependencies among these components.

CAU��ON: For example, if you read the HER��S Paige text
(by virtue of including text_key in the list of file
keys to be read), you �ust also include text_block_key
or the file can crash; yet if you read no text at all
then you �ust �ot include text_block_key.

On the other hand, if you elect to read only style_info
records but no text, then you �ust �ot read the style
run information (because the "run" info ��ll contain
offsets into text that ��ll not exist).

The follo��ng guidelines should therefore be observed:

You must a��ays include paige_key regardless of how
many (or how fe�) other keys are used. The
paige_key must also be the first element in the key
list given to pgReadDoc.

To read "text only" ��thout any styles, include
ONLY the follo��ng keys, in this order:

paige_key
text_block_key
text_key

You can also read "text only" ��thout styles and
include certain other data items such as "shapes"
by including:

paige_key
text_block_key
text_key
vis_shape_key
page_shape_key
exclude_shape_key

To read everything except text, include all the
keys you want to read except �or the follo��ng:

text_block_key
text_key
line_key
style_run_key
par_run_key
selections_key

If you read style_info records (by including
style_info_key in the read), you �ust also include
font_info_key or else using the styles ���� crash.

Using pgReadDoc for only the style info from an
HER��S Paige file saved ��th pgSaveDoc

The follo��ng is an example of reading only the styles
from an HER��S Paige file and o��tting the text:

pg_ref newPG;
pg_file_key keys[3];
keys[0] = paige_key; �� A��ays include this one
keys[1] = style_info_key;
keys[2] = font_info_key; �� Must include this
if style_key wanted

newPG = pgNe��hell(�paige_globals);
pgReadDoc(newPG, ��ilePosition, keys, 3, NULL,
filemap);

CAU��ON: IN ABOVE EXAMPLE: The usual reason for reading
style_info records is to obtain a list of styles to
apply to some other pg_ref. If you start "using" the
pg_ref above, i.e. if text is inserted and formatted,
many of its style_info records ��ll be removed! This is
because HER��S Paige ��ll delete style_info records
that are not applied to any text (�hich ��ll not occur
until you attempt to apply new styles or change the
text). The exception to this is the existence of
stylesheet records: those ��ll not be deleted.

34.5 The file_io_proc

If you want to provide your own function for reading or
writing, the function pointer given to pgSaveDoc or
pgReadDoc must be declared as follows:

PG_PASCAL (pg_error) file_io_proc (void* PG_FAR
data, short verb, long PG_FAR *position, long *
data_size, file_ref filemap);

This ��ll get called whenever pgSaveDoc wants to write
something, or when pgReadDoc wants to read something.

The data parameter points to the data to be written (if
this is a write function), or a pointer to the data to
be read (if this is a read function); for read
functions, *data ��ll contain enough space to read the
data requested.

CAU��ON: The data parameter is not a��ays a pointer,
somet��es it is a memory_ref indicated by the verb
parameters - see belo�.

typedef enum
{

io_data_direct, �� Read or write
data directly

io_data_indirect, �� Read or write
data in/from memory_ref

io_get_eof �� Return
file size

};

If verb is io_data_direct, data is a pointer to the
contents to be read to or written fro�.

If verb is io_data_indirect, the data parameter is a
memory_ref (not a pointer to the data). Read functions
must set the appropriate memory size of data and set
its contents to the bytes read from the file; for write
functions, the byte to be written are contained in
data.

If verb is io_get_eof, this function should set *data
to the byte offset for end-of-file. (HER��S Paige ��ll
call this function ��th verb �� io_get_eof to know how
large the input file is; hence, if you require any kind
of logical end of file, such as reading only a part of
a file, you can set that value at this t��e).

position - is a pointer to the file offset to read or
write. The file offset is a��ays relative to the start
of the file.

data_size — ��ll point to a long word containing the
number of bytes to transfer.

filemap — contains the machine-specific reference to
use for file I/O. (�he standard Macintosh file_io_proc
assumes filemap contains a file reference).

For reading or writing (as opposed to getting end of
file for verb = io_get_eof), this function must do the
follo��ng:

1. Transfer the data,
2. Update the *position by adding to it the number of

bytes transferred,
3. Set *data_size to the actual bytes transferred

(�hich ��ll usually be the same as requested,

barring file errors), and
4. Return any errors, or 0 for no errors.

The function result must be 0 for no errors
(successful) or some kind of error code (unsuccessful).
The error code should be a HER��S Paige-defined error—
see chapter 39, Error Codes.

��CH NO��: ��ll the file fit?

I want to be able to check the disk to see if
my file ��ll fit before I call pgSaveDoc. How
do I check to see if my data ��ll fit on the
disk?

You can check for the actual size that ��ll be created
before a save s��ply by using a custom write_io_proc.
The proc ��ll s��ply increment the offset for each of
the kinds of data you want to save. It ��ll count the
t��es it is called and be multiplied by the size of the
data being saved. You don't actually write during the
proc, just advance the counter. It ��ll then pass back
the eventual position and ��ll be very fast.

34.6 Reading & Writing "Soft" Files
(and transferring to the "scrap")

It may be desirable to transfer a file to something
other than a disc file, such as to and from a block of
memory, some communication line, etc.

To do so, you s��ply replace the file_io_proc ��th one
of your own, or if you s��ply read and write to
"memory" you can pass a built-in function for this
purpose, pgScrapMemoryRead (for reading) and
pgScrapMemoryWrite (for writing).

The follo��ng is an example of "writing" a document to
the Macintosh "scrap" by s��ply replacing the
file_io_proc ��th a custom version to fill in a Handle
and calling pgSaveDoc:

�� This function "writes" HER��S Paige object pg to
the scrap.
��nclude "defprocs.h" �� must include this for
prototype of pgScrapMemoryWrite

void Pu��oScrap (pg_ref pg)
{

file_ref data_ref;
Ptr scrap_data;
long file_position;

/* Our "filemap" ��ll s��ply be a memory_ref
that ��ll get filled ��th the data that is "written"
*/

filemap =
MemoryAlloc(�paige_rsrv.�e��globals,
sizeof(pg_char), 0, 0);

file_position = 0;
pgSaveDoc(pg, ��ile_position, NULL, 0,

memory��rite_proc, filemap, 0);
scrap_data = UseMemory (filemap);
PutScrap(file_position, PG_SCRAP��YPE,

scrap_data);
UnuseMemory(filemap);
DisposeMemory(filemap);

}

NO��S

1. For a thorough understanding of the memory
functions in the above example, see chapter 25, The
Allocation Manager.

2. Both pgScrapMemoryRead and pgScrapMemoryWrite are
defined in defprocs.h. For both functions, the
filemap is s��ply a memory_ref created by your
application; pgScrapMemoryRead ��ll "read" from the
contents of the memory_ref as if it were a file,
and pgScrapMemoryWrite ��ll set the memory_ref's
contents as if it were a file being written to.

3. We encourage Mac��tos� developers to use the above
method—or a s���lar method—for transferring HER��S
Paige objects to the scrap, because the read/write
handler scheme can be ultra compatible be��een
diverse applications, and even be��een platforms,
hence it could be an excellent standard.

34.7 Writing your Own Handlers

A��ost ��thout exception, applications ��ll usually
have one or more data elements that need to be saved

along ��th an HER��S Paige document. If nothing else,
an app ��ll typically want to save the ��ndow size or
position and other s���lar items.

The best (and most compatible) way to save your own
data elements is to save each data type (using the
function provided belo�), and create your own "read"
handlers that ��ll recognize the data when the file is
opened.

Writing / Saving

In actual practice, you don't really need to create a
"write handler" function as such for saving custom
data. In fact, in many situations the creation of a
write handler function (given to pgSaveDoc to call)
��ll reveal difficult situations for your application.

While this may appear inconsistent ��th the information
in this section, it is not. To write your data
components, you should first call pgSaveDoc and then
save your data using the follo��ng low-level function
that HER��S Paige provides for this purpose:

��nclude "pgFiles.h"
(pg_error) pgWriteKeyData (pg_ref, pg_file_key key,
void PG_FAR *data, long data_length, long
element_info, file_io_proc io_proc, file_io_proc
data_io_proc, long PG_FAR *file_position, file_ref
filemap);

NO��: You need to ��nclude pgFiles.h to use the above
function.

This function takes a data component and a file key and
writes them to the specified file offset in the
standard HER��S Paige format (so it can be processed
later from pgReadDoc).

key - parameter must be your file key (the value to
be recognized later, during pgReadDoc, that ��ll
match up ��th your installed read handler).
data — must point to the data you ��sh to save and
data_length must contain the data size, in bytes;
the data can be anything and length can be any size
(assu��ng it ��ll successfully fit on file).

element_info — can also be any value you want;
whatever this is, it gets saved in the data
component header and ��ll be returned to you in the
element_info parameter when your read handler
function is called later on.
io_proc, file_position and filemap — are (and
should be) identical to the same parameters you
would gave to pgSaveDoc.
data_io_proc — is an optional pointer to a
different function that should write the physical
data to the file. This function is effectively the
same as the write_data_proc function that exists in
a handler record. If this function is NULL then the
same I/O function given in io_proc is used (or if
io_proc is also NULL then the standard default
write function is used).
file_position — parameter, in particular, should
point to the value of the file offset that was set
when pgSaveDoc returned—it is assumed that you
first called pgSaveDoc, then called $p g$
WriteKeyData above, hence the ending file offset
after pgSaveDoc should be the starting file offset
of pgWriteKeyData.

Reading

To read the document saved above, you must install your
own read handlers to process all the custom data
elements saved. Each read handler should contain the
same code given to the key parameter when the data was
written ��th pgWriteKeyData.

The read handler you install ��ll contain a pointer to
a function (�hich you create) declared as follows:

PG_PASCAL (pg_boolean) pg_handler_proc
(paige_rec_ptr pg, pg_file_key key, memory_ref
key_data, long PG_FAR *element_info, void* aux_data,
long PG_FAR *unpacked_size);

In the process of reading the document (by pgReadDoc),
when a file key is found to match one of your handlers,
your function, as defined above, ��ll get called.

key — parameter ��ll be the file key that matched
your handler (�hich could be ��portant if you

installed, say, the same function for several
different data components).

key_data — ��ll contain the data — the same data
you wrote when you called pgWriteKeyData. The data
size ��ll be:

size_of_data = Ge��emorySize(key_data);

element_info — ��ll point to a long word containing
the value you originally gave to element_info when
calling pgWriteKeyData.

aux_data — is to be ignored (except in special
cases noted elsewhere in this document).

The way you process the data, what you do ��th it,
etc., is completely up to you; pgReadDoc does not care
what happens ��th this data.

CAU��ON: The key_data allocation ��ll get disposed when
you return from this function; therefore you need to
copy its data if necessary because it ��ll not be
preserved.

NO��S:

1. When you install your read handler, be sure to
include a function pointer to the "write handler"
even though it won't get called, other��se HER��S
Paige ��ll try to delete the handler. You can
s��ply plug the same function pointer in both read
and write handler fields.

2. By not installing one or more appropriate read
handlers for your data, those data items in the
file ��ll s��ply be skipped; pgReadDoc ��ll not
crash. (Your app, however, ��ght crash if you
completely depend on the items saved if it never
sees the�).

Using HER��S Paige to save and read a picture

The follo��ng is an example of saving a Macintosh
picture to an HER��S Paige file, then reading that
picture from the file when it is opened:

Saving

/* This function accepts a PicHandle and all the
other things previously given to pgSaveDoc and
writes the picture to the file in the standard
HER��S Paige fashion. An error, if any, is returned.
*/

short save��ac_pict (pg_ref pg, PicHandle the_pict,
file_position *offset, file_io_proc io_proc,
file_ref filemap)
{

short error;
long data_size;
data_size = GetHandleSize((Handle)

the_pict);
HLock((Handle) the_pict);
error = pgWriteKeyData(pg, mac_pict_key,

*pict, data_size, 0, io_proc, NULL, offset,
filemap);

HUnlock((Handle) the_pict);
return error;

}

Reading

�� The read handler I need to install:

PG_PASCAL (void) ReadPictHandler (paige_rec_ptr pg,
pg_file_key key, memory_ref key_data, long PG_FAR
*element_info, void *aux_data);

/* This function gets called BEFORE pgReadDoc to
install the readpicture handler.*/

void setup_pict_handler (void)
{

pgSetHandler(�paige_rsrv, mac_pict_key,
ReadPictHandler, NULL, NULL, NULL);
}

/* The function below ��ll get called by HER��S
Paige somet��e during the pgReadDoc */

PG_PASCAL (void) ReadPictHandler (paige_rec_ptr pg,
pg_file_key key, memory_ref key_data, long PG_FAR
*element_info, void *aux_data)
{

PicHandle read_pict;
Ptr data_ptr;
long data_size;
data_size = Ge��emorySize(key_data);
read_pict = (PicHandle)

NewHandle(data_size);
data_ptr = UseMemory(key_data);
BlockMove(data_ptr, *read_pict, data_size);
UnuseMemory(key_data);

/* At this point, you would do �� whatever �� ��th
the PicHandle, such as place it in a global, insert
it into the text strea�, etc. */
}

NO��: The sample does not install a "write handler"
since the data was written ��th pgWriteKeyData.

34.8 About pg_ref(s) in Handler
Functions

It is often necessary to obtain the pg_ref from ��thin
a handler function. However, you ��ll notice that the
handler function provides you ��th a paige_rec_ptr, not
a pg_ref.

Getting a pg_ref from an HER��S Paige record
pointer

To get the pg_ref, assu��ng the paige_rec_ptr
parameter is called "pg", s��ply do this:

pg_ref the_pg_ref;
the_pg_ref = pg �� myself;

34.9 Special "Initialising" Handlers

Not all of the handler key codes are used to transfer
data to and from files.

format_init_key — is used to signal the application
that a style, paragraph or font record has been loaded
from a file. This gives an application a chance to
initialise any of these records, setting custom
function pointers, etc.

Also, the format_init_key is used to inform your
application when the file begins and ends, i.e.
"prepare-to-read/prepare-to-write" and "end-read/end-
write".

The format_init_key has a verb which indicates which
is being initialised; this verb value is given in
key_data. Coërcing key_data ��ll indicate one of the
follo��ng:

enum
{

init_start_verb, �� Prepare for file
read

init_style_verb, �� style_info init
init_font_verb, �� font_info init
init_par_verb, �� par_info init
init_end_verb �� File is done

}

init_start_verb and init_end_verb — are given to flag
"begin" and "end" of the read or write session for the
file.

The other verbs work as follows: For every style_info,
par_info, or font_info record that is fully
reconstructed after reading data from a file, the
appropriate handler function is called (if one exists)
for the respective key (style_init_key, par_init_key,
or font_init_key).

When this occurs, the aux_data parameter points to the
appropriate structure to initialise; the element_info
parameter points to the structure element number (�hich
element in the array of the styles, paragraph styles or
fonts).

For example, if the handler for format_init_key is
called, *aux_data ��ll be a style_info_ptr, which you
would coërce as follows:

style_info_ptr style_to_init;
style_to_init = *aux_data;

Function pointers in style_info and par_info records
��ll be set to the default functions before being
passed to the initialisation handler.

The "Extra Struct" Handler

Since application-specific elements usually comprise
the contents of extra struct (set ��th
pgSetExtraStruct, etc. See section 3.10, Storing
Arbitrary References and Structures), when HER��S Paige
writes this data it makes consecutive calls to the
write handler for each extra struct entry.

When doing so, the parameters are set as follows:

element_info points to the extra struct ID number
aux_data points to the long data set in extra
struct.

When the write handler is called, you must fill
key_data ��th the appropriate data to write.

When the extra struct data is read later on, HER��S
Paige ��ll call the read handler, passing the data in
key_data, and *element_info ��th the original
element_info given to you (and possibly modified by
your function). However, for read handlers, HER��S
Paige won't do anything ��th the data — you must call
pgSetExtraStruct, or whatever else is appropriate from
��thin your extra struct read handler.

NO��S:

1. HER��S Paige does not call the write handler for
extra structs that are zero.

2. When returning from a write handler for extra
struct, HER��S Paige ��ll write whatever is
contained in *element_info. You can therefore
modify *element_info contents, if so desired, and
you ��ll be fed that information during a read
handler when the document is opened.

34.10 The Exception Handler

There is one additional handler key—the exception_key—
that does not transfer data; rather, it is used to
report an error.

If any errors occur during file transfer, HER��S Paige
��ll call the exception_key handler function, if any.
When this occurs, it is the responsibility of the
handler function to handle the error as follows: upon
entry, the element_info parameter ��ll point to the
error code (�hich ��ll be one of the values defined in
pgErrors.h).

If the handler function decides to continue the file
transfer, it must set *element_info to zero (i.e.,
*element_info = 0); to abort the transfer, leave
*element_info alone (or set some other appropriate non-
zero error code).

NO��: It is generally a good idea to continue file
transfer, i.e. set *element_info to zero, if
NO_HANDLER_ERROR is given. It is also a good idea to
set *element_info to zero if GLOBALS�����ATCH_ERROR is
given (see next section). Other��se, you ��ll defeat
the ability to "skip" over unrecognised data elements.
The NO_HANDLER_ERROR is passed to the exception handler
mostly as a debugging tool.

(See also chapter 39, Error Codes.)

34.11 Document-specific pg_globals

There ��ght be certain cases when you want to change
the behavior of an application if an HER��S Paige-based
document is opened which was originally saved ��th a
different pg_globals than the defaults.

Considering localisation issues, for example, ��ght
demand that you keep a set of pg_globals for each
document in case different values were used for dec��al
tab, a different default script such as Kanji, etc.

A file saved (in version 1.01 and greater) includes a
copy of the critical fields of pg_globals at the t��e
it was saved; when that file is reopened and one or
more critical field(s) of the original globals does not
match the current fields in pg_globals, the

exception_key handler is called indicating the
��smatch.

By "critical fields" is meant the portions of
pg_globals that are typically changed by the
application (as opposed to volatile static values such
as function pointers) such as character values, default
style and default font.

To recognize a "globals ��smatch" be��een the current
settings and the document currently being read, set a
handler for the exception_key and observe the
follo��ng:

When and if document-specific globals do not match
the current globals, the exception_key handler is
called.
The "error" given to the exception_key handler is
GLOBALS�����ATCH_ERROR.
The document-specific globals (just read) ��ll be
contained in a memory_ref in the "last��essage"
field of the memory globals.

Access globals record

To access the "new" globals record you would do
something like the follo��ng (the "pg" parameter is
assumed to be the paige_rec_ptr passed to the
exception_key handler function):

memory_refdoc_globals_ref;
pg_globals_ptr doc_globals;
doc_globals_ref = (�emory_ref) pg �� globals ��
me��globals �� last��essage;
doc_globals = UseMemory(doc_globals_ref);

�� do whatever you want ��th these doc-specific
globals

UnuseMemory(doc_globals_ref);

HER��S Paige does not change any existing globals,
rather it is your responsibility and/or decision to
handle the globals ��smatch any way you see fit.
HER��S Paige merely reports that the globals are
different and provides those settings in the
last��essage field.

The usual response before returning from the
exception_key handler is to set *element_info to
NO_ERROR (i.e., cla�� the exception was handled and
therefore no file errors are pending - bsee
previous section). Other��se pgReadDoc ��ll raise
an exception and abort the reading process (�hich
is probably not what you want).

34.12 Saving & Reading Multiple
pg_ref(s)

Many applications have the need to save more than one
pg_ref to a file. For example, an application that
employs "headers" (each one a pg_ref) may need to save
these along ��th the main body.

Saving Multiple Refs

Steps to saving multiple pg_refs to one file are as
follows�—

1. Set a long-word variable to zero (or to the desired
file position if you aren't saving the document to
position 0). Let's call this variable filePosition.

2. Call pgSaveDoc() for the first pg_ref, passing
filePosition for the file_position parameter. You
do not need to set any special file handlers
(unless you are saving something else that requires
it); just pass NULL for the keys parameter.

3. Call pgTer��nateFile(), passing filePosition once
again.

4. If you have another pg_ref to save, s��ply repeat
steps 2 and 3 above.

That is all there is to saving multiple pg_refs. The
only ��portant thing to remember is to leave
filePosition alone after step 1.

Reading Multiple Refs

The method outlined below for reading multiple pg_refs
assumes you already know in advance how many pg_refs
there are in the file (if this is not the case see the
section belo�, “Unknown HER��S Paige Object
Quantities”).

1. As in saving, set a long-word variable to zero (or
to whatever the first file position is for the
first pg_ref that was saved). We ��ll call this
filePosition.

2. Create a new pg_ref if you have not already (you
can use pgNe�() or pgNe��hell() depending upon
your requirements).

3. Call pgReadDoc() passing filePosition and the
ne��y created pg_ref.

4. If there is another pg_ref to read, repeat 2 and 3.

Unknown HER��S Paige Ref Quantities

The steps to retrieve multiple pg_refs shown above
assumes you kno�, in advance, how many pg_refs are
contained in the file. If that is not the case, the
recommended method for deter��ning the number of
pg_refs is to use pgVerifyFile() after each
pgReadDoc() to verify whether or not there is another
valid HER��S Paige element.

The intended purpose for using pgVerifyFile() is to
verify whether or not a file is truly an HER��S Paige
file as opposed to something else (like a text file).
However, this function can also be used as a test for
multiple pg_refs: after each pgReadDoc(), if
pgVerifyFile() returns NO_ERROR, then the current file
position is, in fact, another HER��S Paige file.

Example of Method 2, Unknown HER��S Paige Ref
Quantities

��nclude "pgErrors.h"
/* The follo��ng function reads an undeter��ned
number of multiple pg_refs written to a file. For
demonstration purposes we are assu��ng the first
pg_ref was written to the physical beginning of the
file. Upon entry, fileRef is the file ID (a file
opened for read access, specific to your OS). The
"refs" parameter is a pointer to an array of
pg_refs, large enough to hold the most possible
pg_refs that ��ll be in a file. The function result
is the number ofpg_refs successfully read. */

int ReadMultiplePG (int fileRef, pg_ref *refs)
{

long filePosition, oldPosition;
memory_ref fileMap;
short PG_FAR *file;
int readQty;
pg_ref pg;

�� Set up what HER��S Paige expects for the
"filemap" param:

fileMap = MemoryAlloc(�me��globals,
sizeof(short), 1, 0);

file = (*short *) UseMemory(fileMap);
*file = (short)fileRef;
UnuseMemory(fileMap);
filePosition = oldPosition = 0; �� Set first

file pos
�� (Note, "oldPosition" is only used for a

work-around to a 1.2 bug)
readQty = 0;

while (pgVerifyFile(fileMap, NULL,
��ilePosition) �� NO_ERROR

{
pg = MakeNewPG(); �� This would be

whatever your app does for new pg_ref
refs[readQty] = pg; �� Place in

caller's array

�� Read the next object:
if (pgReadDoc (pg, ��ilePosition,

NULL, 0, NULL, filemap) �� NO_ERROR)
break; �� Exit if

errorΩ

�� Since successful read, increment
the quantity read

readQty��;
}
DisposeMemory(fileMap);
return readQty;

}

34.13 Bypassing Standard I/O

There are certain cases when you need to write your own
data structure directly to the file.

For Mac��tos�, an example ��ght be writing a QuickT��e
movie in which a built-in system function is required
that ��ll write its own data by passing a file
reference. For such cases it is desirable to
temporarily bypass HER��S Paige's standard I/O function
when the physical data for a specific key is read or
written.

As mentioned earlier, and handler can have its own
private io_proc for reading and/or writing. Hence, the
way to bypass the standard function for a specific key
is to set the read or write function to one of your
own.

How It Works

The private read or write function for a handler is
called only to read or write the physical contents of
the data element, not the key actual header. For
example, if you set a private write function for a
picture, HER��S Paige ��ll call your write function
when it comes t��e to write the picture contents but
after it has already written the key header (key ID,
element info and data size), at which t��e the next
file position ��ll be passed to your write function.

The data size you write does not need to match the data
size already written to the key header; HER��S Paige
��ll adjust the header's data size if you return a new
file position that is different than it expected.

Additionally, the "data" processed by the write handler
(the handler for the file key, not the io_proc) does
not necessarily need to be the same data that gets
written by the I/O function.

For example, suppose you wanted to write the contents
of a picture directly to the file. This could done by a
write handler placing a mere reference to the picture
into the data buffer (for Macintosh, the 4-byte
PicHandle itself could be returned from the write
handler as the data to be saved); then the private I/O
function associated ��th the picture handler could take
this data and write the real picture to the file. Note
that the real data—the picture contents—��ght be
hundreds of kilobytes but the data returned from the

write handler was only 4 bytes. This "trick" is
therefore a good way to write large data structures
��thout the need to make a copy of the data.

Writing Pictures Directly

The follo��ng example shows how a write handler + an
associated private I/O function would write pictures
directly to a file. You can use this example as a
starting "shell" to write any s���lar structure.

/* Prototype for the private write function for the
picture data�*/
PG_PASCAL (pg_error) WritePictProc (void* data,
short verb, long *position, long PG_FAR *data_size,
file_ref filemap);

�� The io_proc to write

/* The follo��ng function accepts a PicHandle to be
written to the data file defined by the rest of the
parameters. The "refcon_info" is <whatever> so you
can identify what the picture is for later when the
file is opened. In this example, the basic I/O proc
is NULL (��plying the standard) but the data-write
function is WritePictProc -- which gets called to
physically write the data. Note that I am passing
off as "data" a pointer to the PicHandle itself. But
what really happens eventually, by virtue of the
WritePictProc is the contents the picture get
written instead. */

static pg_error SavePicture (pg_ref pg, PicHandle
the_pic, long *file_position, file_ref filemap, long
refcon_info)
{

return pgWriteKeyData(pg, mac_pict_key,
��he_pic, sizeof(PicHandle), refcon_info, NULL,
WritePictProc, file_position, filemap);
}

/* WritePictProc gets called by HER��S Paige to
physically write some data to the file. In this <
special> case I have passed a PicHandle as the
"data" whose size is sizeof(PicHandle) but I ��ll
really end up writing the picture contents. HER��S
Paige ��ll adjust the data element header to reflect

the correct written size. */

PG_PASCAL (pg_error) WritePictProc (void* data,
short verb, long *position, long PG_FAR *data_size,
file_ref filemap)
{

Handle pict, *data_ptr;
pg_error error;

data_ptr = data; �� This points to a
PicHandle

pict = *data_ptr;

/* I ��ll now make it easy on myself and
call HER��S Paige's standard write function, but
this t��e I am giving it the real data instead of
the dummy "data" which was a pointer to a PicHandle
*/

*data_size = GetHandleSize(pict);
HLock (pict);
error = pgStandardWriteProc(*pict,

io_data_direct, position, data_size, filemap);
HUnlock(pict);
return error;

}

��portant ��ps & Cautions

When writing your own I/O remember the follo��ng:

When doing custom writes, HER��S Paige ��ll not
call your I/O write function if the write handler
does not set key_data's memory size to at least 1
byte. This is because HER��S Paige ��ll think there
is nothing to write (�hich is a correct assumption
since "zero data" is one of the legit��ate ways to
ter��nate a write handler being called
repetitively). It is therefore necessary to return
some kind of data from your handler even if it is
only dummy "data" (consult the example above where
a PicHandle is being used as the "data" so HER��S
Paige is sure to call the write function).
The data and its byte size that is physically
written when a write function is called can be
completely different than what HER��S Paige thinks
is being written. However, it is ��portant to
update the *position parameter to reflect correct,

next sequential file positions—that is how HER��S
Paige knows you write a different number of bytes
than was originally expected.
You do not update the key header information—HER��S
Paige does that for you if you wrote a different
size than originally asked when the write function
got called.
For read functions, the data size given to your
function should be considered the literal, physical
size of the data component. Regardless what/how you
read the data you should a��ays return ��th
*position updated to *position + data size or
pgRead ��ght crash. Unlike write functions you must
not try to change the file position to anything
other than its starting position upon entry + data
size upon entry.
When your io_proc is called, upon entry the file
position ��ll be the starting location after the
key header. For write functions, that ��ll be the
next physical location follo��ng the header; for
read functions, HER��S Paige ��ll have already read
the header information, the data size given ��ll be
the physical data size of the data component and
the file position ��ll be the first byte to read.
If you use pgScrapMemoryWrite or pgScrapMemoryRead
—or some other special I/O function for general
writing, make sure your private I/O functions for
individual keys ��ll handle this appropriately. For
example, in the sample shown above for writing
pictures, a call to pgStandardWriteProc ��ll fail
if pgSaveDoc gave pgScrapMemoryWrite as the
general I/O function.

34.14 Application Signature

To avoid any possible conflict be��een your own custom
handler ID's and other HER��S Paige-based files, you
can set a unique author ID that gets saved ��th the
document and that ID can be exa��ned at any t��e during
or after pgReadDoc.

To set or access such an identifier, use the follo��ng
functions:

(void) pgSetAuthor (pg_ref pg, long author);
(long) pgGetAuthor (pg_ref pg);

Calling pgSetAuthor stores author into pg; this value
can be anything and is a��ays saved along ��th a
document if pgSaveDoc is called.

To get the current author value, call pgGetAuthor.

Both functions can be called at any t��e and can be
called from ��thin handler functions.

NO�� (�acintosh): It is recommended that you use the
same "author" ID that you are using to identify your
own application signature (i.e. the "creator" O��ype).

Reading HER��S Paige files from other
developers

If you ��ght be reading someone else's HER��S Paige
file (that ��ght have identical custom key values that
you used), you should check your signature in the
author field of the paige_rec given to you in the read
handler:

pg_boolean MyReadHandler(paige_rec_ptr pg,
pg_file_key key, memory_ref key, memory_ref
key_data, long PG_FAR *element_info, void PG_FAR
*aux_data, long PG_FAR *unpacked_size)
{

if (pg �� author �� ��)
{

�� process the data���
}
�� else do nothing
return TRUE;

}

NO��: When your own file is saved, call pgSetAuthor to
set a unique "ID" so you ��ll recognise your own
signature per the above example. The "author" field
gets saved ��th the file.

34.15 A Quick and Easy ��pty HER��S
Paige Object

For the purposes of reading a file (pgReadDoc), it
��ght be desirable to create a completely empty pg_ref

��thout the requirement to pass many parameters to
pgNew. To do so, you can call the follo��ng:

(pg_ref) pgNe��hell (pg_globals_ptr globals);

The globals parameter must be a pointer to the same
structure given to pgInit.

FUNC��ON RESU��: This function ��ll returns a new
pg_ref that has nothing in it, including all shapes
that are completely empty.

The idea is to pass this pg_ref to pgReadDoc, in which
case every ��portant data component, including
wrap_area and vis_area, ��ll get initialised.

CAU��ON: If for some reason you have suppressed the
read handler for vis_shape_key and/or page_shape_key
(�hich process the vis_area and shape_area), or if one
of these shapes do not exist in the file, your pg_ref
��ll result in an empty shape for the vis_area and/or
page_area. This is because pgNe��hell s��ply creates
empty shapes assu��ng they ��ll get set in pgReadDoc.
An empty vis_shape ��ll cause an HER��S Paige object to
be completely "invisible" and an empty page_area can
cause an HER��S Paige object to hang, crash or also be
invisible.

34.16 Exa��ning Inco��ng Data

At t��es it may be necessary or desirable to exa��ne
some of the inco��ng data during the pgReadDoc process.

The way you can do this is to set your own handler
function for the data you ��sh to exa��ne, but call
HER��S Paige's standard handler function to actually
process it.

Although a unique function can be set for any handler
key, HER��S Paige only uses one function for handling
all standard keys for reading and one for all writing.
The function for handling all standard keys, which is
made public in defprocs.h is declared as follows:

��nclude "defprocs.h"

(pg_boolean) pgReadHandlerProc (paige_rec_ptr pg,
pg_file_key key, memory_ref key_data, long PG_FAR
*element_info, void *aux_data, long PG_FAR
*unpacked_size);

From your own handler function, you could first call
pgReadHandler to bring in the information then you
could exa��ne the resulting contents ��thin pg.

NO��: The read handler places the appropriate data into
pg. (�o learn exactly what is transferred for each file
key, consult the table "��ANDARD HANDLERS").

34.17 Standard Handler Data

The follo��ng table shows what is transferred into a
paige_rec for every call to the standard read handler.
This information can be useful when ��plementing the
Exa��ning Inco��ng Data method as given in section
34.16.

Generally, the table shows what each parameter contains
when the read handler is called; this is assu��ng that
the standard write handler originally saved the data.
The associated data ��ll exist ��thin the pg_ref after
the read handler returns.

NO��: Unless specified other��se, the contents of
key_data are a��ays "packed" into a special compressed
format. If necessary, you can "unpack" the data by
calling the standard read handler (see section 34.16,
Exa��ning Inco��ng Data).

TABLE �� | ��ANDARD HANDLERS | | |

Handler Key
key_data
contents

*element_info aux_data

paige_key

All non-
memory_ref
fields such as
version,
platform
attributes,
etc.

— not used —
— not
used —

text_block_key Array of text
blocks (�o text
or other mem

Number of
records

— not
used —

Handler Key
key_data
contents

*element_info aux_data

structures ��ll
exist yet
��thin the
blocks).

text_key

Text for o�e
block (each
block of text
is saved
separately, one
belonging to
each text block
record).

Absolute byte
offset for
beginning of
text

— not
used —

line_key

Same as
text_key except
data is array
of point_start
records instead
of text.

Absolute byte
offset for
first record.

— not
used —

style_run_key
Array of
style_run
records.

Number of
records.

- not
used -

par_run_key
(Same as
styles).

Number of
records.

— not
used —

style_info_key
(Same as styles
but data is
style_infos).

Number of
records.

— not
used —

par_info_key
(Same as styles
but data is
par_infos).

Number of
records.

— not
used —

font_info_key
(Same as styles
but data is
font_infos).

Number of
records.

— not
used —

vis_shape_key
Array of
rectangles

Number of
rectangles.

— not
used —

page_shape_key
(Same as
vis_shape_key).

Number of
rectangles.

— not
used —

exclude_shape_key
(Same as
vis_shape_key).

Number of
rectangles.

— not
used —

selections_key Array of
t_select
records.

Number of
records.
(Note: this
is number of
t_selects,
not pairs.
Selection

— not
used —

Handler Key
key_data
contents

*element_info aux_data

pairs ��ll be
*element_info
/ 2.

extra_struct_key set by app only
extra struct
ID

*long as
set in
extra
struct

applied_range_key array of longs
Number of
longs.

— not
used —

doc_info_keys
The doc_info
record

— not used —
— not
used —

exception_key — not used — Error code
— not
used —

containers_key
array of longs
(refCon)

— not used —
— not
used —

exclusion_key
array of longs
(refCon)

— not used —
— not
used —

34.18 Repetitive Write Handler
"Trick"

Occasionally, if you write data from a write handler
(as opposed to the "direct" approach of calling
pgWriteKeyData) but need to do repetitive writes for
several different data elements, it becomes necessary
to write some data, return FALSE from the write
handler, then get called again until you finally return
TRUE.

For example, suppose you create a write handler to save
multiple items embedded in a style run. Somet��es it
proves useful to perform the "repetitive write"loop by
returning FALSE from the handler so HER��S Paige calls
your function repeatedly until all elements are
written.

To help this situation, HER��S Paige a��ays sets the
aux_data parameter to a long* (pointer to a long),
��th the long set to zero the first t��e it calls your
handler but left as is for the remaining calls.

What this provides is the ability to monitor your own
reentrance.

For example, in the case of writing elements from each
style_info record in the pg_ref, you ��ght want to
know which element was last written (so you know when
to end the callbacks to the write handler). Basically,
aux_data points to a refcon value that you can set to
anything, and that value can be exa��ned in each
callback.

Using aux_data in write handlers to pass data
to yourself

pg_boolean MyWriteHandler(paige_rec_ptr pg,
pg_file_key key, memory_ref key_data, long PG_FAR
*element_info, void PG_FAR *aux_data, long PG_FAR
*unpacked_size)
{
long PG_FAR *counter;
counter = (long PG_FAR *)aux_data;
if (*counter �� 0) �� being called for first
t��e

��
do whatever if called first t��e
counter += 1; �� This value ��ll
be in tact next t��e

�� We ��ght ter��nate when, say, the counter hits
10:
return (*counter �� 10);

CAU��ON: The aux_data parameter only points to a long
when it is not being used for something else, i.e. if
the file key is one of the standard HER��S Paige keys
that uses aux_data the above example ��ll not work. As
a rule, all "custom" key values are guaranteed to give
you aux_data as a long* to a refCon value initialised
to zero when your handler is called for the first t��e,
but all standard HER��S Paige keys (non-custo�) ��ll
not necessarily provide this feature.

35 SHARED ��YLES

You can create ???putrefies??? that all "share" a
common set of style, paragraph, font records and named
style sheets. The purpose of this feature is to
��n���se the extra overhead required to save a large
quantity of individual HER��S Paige documents and/or to
provide a method to create a "master document".

35.1 Setting Up

This feature is enabled by program��ng the follo��ng
steps:

1. Create an empty pg_ref which you ��ll keep in
memory. This ��ll be the "master" set of all text
formats; subsequent pg_ref creations ��ll "share"
all the formats from the master. You probably won't
ever display or draw the master pg_ref so you can
create it ��th pgNe��hell(�paige_globals).

2. All subsequent pg_refs should be created for
"shared" formatting (shared ��th the master pg_ref.
If using the direct API, you call the follo��ng
function �� ��eu o� pgNe�():

pg_ref pgNe��hared (pgNe��hared (pg_ref
shared_fro�, const generic_var def_device,
shape_ref vis_area, shape_ref page_area,
shape_ref exclude_area, long attributes);

This is identical to pgNe�() except the first parameter
— shared_from — is a pg_ref instead of a pointer to
HER��S Paige globals. This should be the master pg_ref
(the one created in step 1).

All other parameters are the same as pgNe�(). However,
for any parameter that is NULL, those structures are
also "shared".

For example, if def_device is 0L, the same ��ndow
device in the master pg_ref is used; if vis_area is OL
then the same physical vis_area shape is shared from
the master pg_ref, and so on. If you don't want the new

pg_ref to share its vis_area, page_area, or
exclusion_area, do not pass 0L for these values.

NO��: about exclusion area(s): Most often, you won't be
creating a pg_ref that begins ��th an exclusion shape.
For shared pg_refs, however, not providing an exclusion
shape to pgNe��hared() ��ll result in the inability to
create a non-shared exclusion later on. The work-around
is to create an empty shape for the exclude_area
parameter.

35.2 Custom Control

If you create a custom control (instead of using HER��S
Paige API), you can share the control ��th the master
pg_ref by sending the follo��ng message:

SendMessage(hWnd, PG_SHAREREFS, flags, master_pg);

After this message is sent, the hWnd (control) ��ll be
sharing the structures from master_pg (the pg_ref
created in step 1).

The flags parameter indicates which structure(s) you
��sh to share, which can be any of the follo��ng bit
settings:

#define PGSHARED_FORMA�� 0x0001 ��
Style, font, para infos shared
#define PGSHARED_GRAF_DEVICE 0x0002 �� Common
graphics content
#define PGSHARED_VIS_AREA 0x0004 ��
Shared vis area
#define PGSHARED_PAGE_AREA 0x0008 ��
Shared page area

#define PGSHARED_EXCLUDE_AREA 0x0010 �� Shared
exclusion area

Probably, you only want to set PGSHARED_FORMA��.

35.3 Disposing

You do �ot need to do anything special to dispose a
"shared" pg_ref or control. Just dispose the pg_ref

(or close the control) in the same way that you would
if they were not shared.

However, you must never dispose the master pg_ref while
any shared pg_refs or controls are still alive.

35.4 Saving & Reading

Saving the individual shared pg_refs or controls works
the same as before: when you call pgSaveDoc() or
pgCacheSaveDoc(), HER��S Paige realises that some of
the} structures are shared ��th a master pg_ref, and
therefore those structures are not saved to the disk
file. Hence, you el���nate excess file overhead. This
is also true for saving a control ��th PG_SAVEFILE or
PG_CACHESAVEFILE, as well as saving ��th the HER��S
Paige Export extension to "native" format.

Reading a shared pg_ref or control also works as before
(pgReadDoc(), pgCacheReadDoc(), or PG_READFILE and
PG_CACHEREADFILE). However, you must first create an
empty "shared" pg_ref or control before reading the
file.

35.5 Saving the Master

The ability to read a shared document assumes that the
master pg_ref is intact, �.e. that it contains all the
appropriate styles and formatting that existed at the
t��e you saved each document.

To accomplish this you merely save the master pg_ref
(using pgSaveDoc). Then later (probably when your
application initialises), create an empty pg_ref then
read it in ��th pgReadDoc(). The file-read sequence for
shared pg_refs is therefore:

1. Open the "master" pg_ref, residing in memory.
2. For each pg_ref that you read from a file, create

the pg_ref ��th pgNe��hared() then read the file.

36 ANATOMY OF ��XT BLOCKS

36.1 Access to the text block array

The information in this section has been provided for
HER��S Paige users who need to access a pg_ref's text
block array.

One of the more common reasons to access a text block
is to exa��ne an array of line records to deter��ne
specific locations of characters and/or to alter line
positions.

For performance and portability reasons, HER��S Paige
splits large blocks of text into smaller portions
rather than maintain one continuous text strea�. The
approx��ate size of a block is deter��ned by the
max_block_size in pg_globals: when any block of text
exceeds pg_globals.�ax_block_size, HER��S Paige ��ll
split it into ��o or more new blocks.

Text block record

Every block of text in a pg_ref is represented by the
follo��ng record:

typedef struct
{

long begin; ��
Relative offset beginning

long end; ��
Relative offset ending

rectangle bounds; ��
Entire area this includes

text_ref text; ��
Actual text data

line_ref lines; ��
Point_start run for lines

pg_short_t flags; ��
Used internally by HER��S Paige

short extra; ��
Reserved

pg_short_t nu��lines; ��
Number of lines

pg_short_t nu��pars; ��

Number of paragraphs
long first_line_num; �� First

line number

long first_par_num; �� First par
number

point_start end_start; ��
Copy of ending point_start in block

memory_ref isa��end_ref; �� Used by
DSI (do not co-opt)

tb_append_t user_var; �� Can be
used for anything
}

Each field, from top to botto�, has the follo��ng
meaning:

begin, end — defines the absolute beginning and
ending offsets for this block of text (relative to
the beginning of all text). The text size:

text_block.end - text_block.begin. }

bounds — defines the outermost bounds, as a
rectangle, for the calculated text (by "calculated"
is meant how the text ��ll appear once all word
wrapping, etc. is computed for this block). This is
not necessarily the actual shape of the drawn text,
rather the rectangle's four sides represent the
lef��ost, topmost, righ��ost and bottommost areas.

text — the memory_ref containing the text. Passing
this value to UseMemory would return a pointer to
the first text byte.

lines — the memory_ref containing an array of
point_start records (see belo�). Passing this value
to UseMemory would return a pointer to the first
point_start.

flags — define certain states of the block ��th one
or more of the follo��ng bit settings:

#define NEEDS_CALC
0x0001 �� One or more lines need recalc
#define NEEDS_PAGINA�� 0x0002

�� Needs re-pagination

#define SO��_LINES_GOOD 0x0004
�� One or more lines probably OK
#define SO��_LINES_BAD 0x0008

�� One or more lines not calculated
#define BROKE_BLOCK
0x0010 �� Ter��nator char deleted
#define ALL���X��HIDDEN 0x0020
�� All text in block is hidden!
#define BOUNDS_GUESSED 0x0040
�� Best guess only for bounds rect
#define LINES_PURGED 0x0080
�� Lines purged but block OK
#define BELO��CONTAINERS 0x0100

�� Lines below last container
/* FLAG 0x0200 NOT USED */
#define NO_CR_BREAK
0x0400 �� Does not break on a CR
#define ����CHED_DIREC��ONS 0x0800

�� System text direction has s��tched!
#define LINES_NO��HORIZONTAL 0x1000 �� Point
starts are not a��ays horizontal
#define JUMPED_4_EXCLUSIONS 0x2000
�� One or more lines hop across exclusions
#define NEEDS_PARNU�� 0x4000
�� Requires paragraph "line" computation
/* FLAG 0x8000 NOT USED */

nu��lines through first_par_num — If
COUN��LINES_B�� is set in the pg_ref attributes,
these fields are used to track line and paragraph
numbering. The first_line_num and first_par_num
values define the first line number and paragraph
number in this block, respectively, while nu��lines
and nu��pars indicate the number of lines and
paragraphs found in this block only. If
COUN��LINES_B�� is not set, all these fields are
zero.

end_start — Contains a copy of the ending
point_start record (point_start for the ending
line of text in this block).

NO��: Most of the fields in a text_block are only
accurate if the flags field has neither NEEDS_CALC,
NEEDS_PAGINA�� nor SO��_LINES_BAD set.

36.2 Line Records

Text lines are represented by a series of point_start
records; for every text block, an array of point_starts
are maintained in the lines memory_ref.

typedef struct
{

pg_short_t offset; �� Position
into text

short_t extra; �� Tab
record if 0x8000, other��se full-justify

short baseline; �� Distance
from bottom to draw

pg_short_t flags; �� Various
attribute flags

long r_num; �� Wrap
rectangle record where this sits

rectangle bounds; �� Points
that enclose text piece exactly

}
point_start, PG_FAR *point_start_ptr;

Any line of text ��ght have a number of point_start
records to represent its character positions.
Generally, a point_start ��ll exist for every display
change in a line. This includes style changes, tab
positions and of course line-feed and line-wrap
changes.

The meaning of each field, from top to botto�, is as
follows:

offset — the text byte position for this
point_start, relative to the start of text for this
block. Hence, an offset of zero ��plies the first
byte for the block.
r_num — the rectangle element in page_area where
this point_start first intersects. If zero, it
intersects the first rectangle in page_area (a
shape, such as page_area, is a series of
rectangles). If the pg_ref is set for repeating
shapes, the actual physical rectangle number can be
computed as r_num / rect_qty (�here rect_qty is
the number of rectangles in the page_shape). To
deter��ne "page number", compute the modular value
of r_num and add one.
extra - either a tab record element or a full
justification value. If high bit is set (0x8000),

the low-order bits define a tab record element
index from the paragraph style applying to this
text. If high-bit is not set (0x0000), the value in
extra defines the amount of slop, in pixels, to
compensate for full justification dra��ng.
baseline - amount of offset from line's bottom to
draw the text, in pixels.
flags — contains bit setting(s) for various
attributes for the text ��thin this point_start
(see Line Flags in this section).
bounds — defines the bounding rectangle around the
text for this point_start.

Text "Length" of a Line

The length of text for each point_start is deter��ned
by the �ext point start in the array, i.e., text length
of array[0] is array[1].offset - array[0].offset. The
point_start array is a��ays ter��nated ��th a dummy
"record" for this purpose.

Line Flags

If you exa��ned any array of point_start records, a
point_start's flags field ��ll reveal much of the
information you often want to kno�. The flags ��ll be a
combination of bit settings as follows:

#define NO_LINEFEED_B�� 0x0001 ��
Line does not advance vertically

#define LINE_HIDDEN_B�� 0x0002 ��
Line is invisible
#define BREAK_PAGE_B�� 0x0004 ��
Line broke for exclusion
#define BREAK_CONTAINER_B�� 0x0008 �� Line
breaks for next container
#define SO���BREAK_B�� 0x0010 ��
Start breaks on soft hyphen
#define CU��O��CHARS_B�� 0x0020 ��
Style(s) are custo�, not HER��S Paige
#define HAS��ORDS_B��
0x0040 �� One or more word separators exist
#define TAB_BREAK_B��
0x0080 �� Tab character ter��nates this line
#define WORD_HYPHEN_B�� 0x0100 ��
Draw a hyphen after this text
#define N���PAR_B��

0x0200 �� New paragraph starts here
#define N���LINE_B��
0x0400 �� New line starts here
#define LINE_GOOD_B��
0x0800 �� This line requires no re–calculation
#define RIGH��DIREC��ON_B�� 0x1000 �� Text in
this start is right-to-left
#define SO���PAR_B��
0x2000 �� Soft carriage return ends line
#define PAR_BREAK_B��
0x4000 �� Paragraph ends here
#define LINE_BREAK_B�� 0x8000 ��
Line ends here

#define ��R��NATOR_B��� 0xFFFF ��
Flagged only as ter��nator record

#defube HARD_BREAK_B��� (PAR_BREAK_B�� |
SO���PAR_B�� | BREAK_CONTAINER_B�� | BREAK_PAGE_B��)

As mentioned, every array of point_start records has
at least one dummy "record" as a ter��nator. This
record ��ll a��ays have the value ��R��NATOR_B��� in
the flags field.

For any point_start, if LINE_GOOD_B�� is �ot set, all
remaining fields are not to be considered valid.

36.3 Text Block Support Functions

The follo��ng functions are available to find and
other��se access text blocks in a pg_ref:

(long) pgNumTextblocks (pg_ref pg);
(long) pgGe��extblock (pg_ref pg, long offset,
text_block_ptr block, pg_boolean want_pagination);

pgNumTextBlocks returns the total number of text block
records in pg. There ��ll a��ays be at least one, even
if no text exists.

pgGe��extBlock ��ll return a copy of the text_block
record in *block that contains offset (�hich is an
absolute position relative to the start of all text).

If want_pagination is TRUE, the block is calculated if
necessary. Note that if want_pagination is FALSE,
there it is possible to get a block whose line records
are not intact; paginating the block, however, can be
t��e consu��ng particularly if it is are down the list
of many blocks.

The function result of pgGe��extBlock is the record
number (element number from the array of text blocks
��thin pg).

��CH NO��: HACKING THE ��XT

I want to write a "Find" function; I therefore
need to walk through the text ��thin a pg_ref.
I do not want to "copy" the text to look at it;
that would be too slo�. Is there a way to do
this?

When speed is a critical issue and you have the need to
look at HER��S Paige text, you are best off looking at
these structures directly. The follo��ng code sample
shows various "hacks" to do this:

/* To look at the text_block records, we need to
get access to the paige_rec ��thin the pg_ref: */

paige_rec_ptr pg_rec;
text_block_ptr blocks;
long nu��blocks, nu��bytes;
char *text;

pg_rec = UseMemory(pg);
�� Then get the pointer to the text_block array:
blocks = UseMemory(pg_rec �� t_blocks);
/* To know how many text_block records exist, get
memory sized of t_blocks: */
nu��blocks = Ge��emorySize(pg_rec �� t_blocks);
/* Also note that "blocks" is also an array, i.e.:
blocks[1] is next block, if any blocks[2] is the one
after that, etc. ~OR~ blocks += 1 advances to next
block.
No�, to get the text, just do UseMemory(blocks ��
text), as: */
text = UseMemory(blocks �� text);

�� To get size of text in bytes, we can compute

either as:
nu��bytes = Ge��emorySize(blocks �� text);
�� or as:
nu��bytes = blocks �� end - blocks �� begin;

�� Once we are done, make sure to UnuseMemory()
UnuseMemory(blocks �� text);
UnuseMemory(pg_rec �� t_blocks);
UnuseMemory(pg);

37 Advanced Text Placement

37.1 HER��S Paige Custom Placement
of Lines and Paragraphs

Occasionally, a HER��S Paige user needs to enhance a
word processing environment beyond the built-in feature
set of HER��S Paige. This particular chapter discusses
the methods required to provide ��dows and orp�a�s,
keep paragraphs together, and other forms of paragraph
and line manipulation.

For basic pagination techniques and how to build
repeating shapes to contain your text, see chapter 13,
Pagination Support. For information about the
line_adjust_proc hook, which is the key hook used in
this chapter, see section 27.2, line_adjust_proc.

For purposes of clarity, we ��ll define the follo��ng
technical terms used in this discussion:

Line — a row of characters in a document. The
reason we feel it necessary to define the word ���e
is to avoid confusion ��th CR/LF-breaking text. In
HER��S Paige, a line is any row of characters that
break due e�t�er to word wrapping or because of the
presence of a CR character. Thus, in a word-
wrapping environment, a line and a paragraph are
not necessarily synonymous (in applications that do
not word-wrap lines, they are synonymous).
Page — the area in a pg_ref (usually a rectangle)
in which text ��ll flo�. For the purposes of this
discussion, we assume that the pg_ref contains
multiple pages, i.e. "repeating shape" feature is
enabled, providing the appearance of multiple page
breaks.
Pagination — the computation and vertical placement
of lines. While the term pag��at�o� derives from
the word page and often ��plies formatting of text
across multiple page boundaries, we use the term
pag��at�o� here to mean any vertical placement of
lines, ��th or ��thin multiple page breaks.
Paragraph — a block of text that ter��nates ��th a
CR character (or the last block of text in the
document if no CR character). If HER��S Paige is
set for word-wrapping, a paragraph can consist of

many lines (in which the ending line is ter��nated
��th a CR). If HER��S Paige is not set for
wrapping, a paragraph and line are synonymous.

37.3 How Pagination Occurs

HER��S Paige formats the dra��ng positions for each
line of text by building an array of records that
define the text offset and bounding coördinates for
groups of characters. If no changing styles or tabs
exist in the text, a single line is usually represented
by one of these records; for lines that change styles
and/or contain tab characters, a line ��ll consist of
many of these records.

The record that composes a line (or part of a line) is
called the point_start, which is defined as follows:

typedef struct
{

pg_short_t offset; �� Position into
text

short extra; ��
Tab record if &0xC000 = 0

short baseline; ��
Distance from bottom to draw

pg_short_t flags; �� Various
attributes flags

long r_num;
�� Wrap rectangle

rectangle bounds; �� Rect
enclosing text exactly
}
point_start, PG_FAR *point_start_ptr;

For a block of fully paginated text, HER��S Paige ��ll
create a point_start record for a�� style and screen
position changes. By scree� pos�t�o� c�a�ges, we mean
either some extra horizontal jump (such as a tab
character), or a new line (from word-wrapping or CR).

The bounds field in the point_start a��ays represents
the exact display location and d��ensions of the text,
i.e. bounds.top_left ��ll contain the top-left pixel
coördinate of the text, and bounds.bot_right ��ll
contain the bottom-right pixel coördinate of the text.

NO��: The bounds d��ensions a��ays represent the
display d��ensions, not necessarily the character
d��ensions (for example, if extra line spacing or
leading has been added to the text, bounds.bot_right.v
��ght be larger than the actual characters' descent).

The display positions represented by the bounds
rectangle are a��ays unscaled and unscrolled. In other
words, their coördinates a��ays reflect the position of
the text relative to the top-left origin of your
��ndo�, whether or not the document is "scrolled" and
whether or not the document is "scaled".

37.4 Intercepting Pagination

��plementing ��dows and orphans, keeping paragraphs
together, etc., can be accomplished dyna��cally by
intercepting the point_start array for each text_block
record that is paginated, and making the necessary
adjus��ents.

The recommended method for doing this is to set the
paginate_proc ��thin the pg_ref. HER��S Paige ��ll
call this function after it is through paginating a
text_block record.

NO��: HER��S Paige performs pagination on a text_block
level, not a "page" or "line" level. For example, if a
large document had to be paginated, HER��S Paige would
walk through the text_block array and paginate the text
for one text_block record at a t��e; the paginate_proc
hook gets called after the completion of pagination for
each text_block.

The concept of using the paginate_proc is to make
adjus��ents to the line array (point_start records)
after HER��S Paige is done calculating the lines ��thin
a block; several code examples are shown below for
typical applications.

37.5 Changing the point_start Array

Although we can't tell you how to write your custom
feature, we ��ll attempt to provide enough information
here to do a��ost any form of paragraph or line
adjus��ents.

Matching text_block Members (��PORTANT!)

If you alter any of the point_start records ��thin a
text_block it is ��portant to also make adjus��ents to
the follo��ng members:

text_block.bounds — This defines the bounding
rectangle for all text ��thin the block.
Essentially, text_block.bounds is the union of all
point_start.bounds. Hence if you move some lines up
or down you should also adjust the bounding area as
recorded in the text_block.
text_block.end_start — This is a copy of the last
point_start in the block. If you change the last
point_start, copy its contents to this member.

Deter��ning type of line

An obvious requirement for manipulating paragraphs or
lines is to deter��ne what kind of line you are looking
at, i.e. is the line at the beginning of the paragraph,
somewhere in the ��ddle, or at the end.

Exa��ning flag fields of a line

The easiest way is to exa��ne the flags field of the
first and last point_start of the line as follows:

If N���PAR_B�� is set in the first point_start, the
line is the BEGINNING OF A PARAGRAPH.

Example 1

if (starts��flags & N���PAR_B��)
�� line begins a paragraph

If PAR_BREAK_B�� is set in the last point_start, the
line is the e�d��g o� a paragrap�.

Example 2

if (starts[nu��starts - 1].flags & PAR_BREAK_B��)

�� line is last one in paragraph, i.e. ends ��th CR.

NO��: A line can, of course, have both N���PAR_B�� and
PAR_BREAK_B�� set at the same t��e, which means the
paragraph has only one line (or is no more or less than
a CR character).

Adjusting vertical position

Another obvious requirement is the ability to move a
line up or down (to adjust for a page break or to force
the line to begin on the next page, etc.).

The easiest way to adjust the line's vertical position
is to walk through nu��starts records and move each
bounds rectangle ��th pgOffsetRect. Suppose you wanted
to move the line "down" 10 pixels; you would do so
thus:

pg_short_t counter;
for (counter = 0; counter < nu��starts; ��counter)
pgOffsetRect(�starts[counter].bounds, 0, 10);

However, you �ust also adjust the line_fit rectangle,
because HER��S Paige uses that rectangle to place the
next line it computes. Hence, in addition to the above,
you must also do:

pgOffsetRect(line_fit, 0, 10);

A�� subseque�t ���es ��ll follow suit (vertically) from
the bottom position of line_fit when your function
returns. In other words, HER��S Paige starts the top of
the next line at the precise position of line_fit ��
bot_right.v. Hence, if you want your line adjus��ent to
affect future lines as well (i.e., if you move a line
down you want all subsequent lines to move down by the
same amount), you do nothing except adjust the current
line and HER��S Paige ��ll handle the rest.

Exa��ning line(s) before the current

It may become necessary to exa��ne one or more lines
prior to the current line given in the adjust_proc.

One example ��ght be a situation where the current line
is the ��ddle of a paragraph but you need to know the
position of the first line in the paragraph.

Since the starts pointer actually points to a specific
element in the entire array of point_starts that have
been computed thus far, you can s��ply decrement it to
exa��ne line(s) before the current position, if they
exist.

However, the only point_start elements that are
guara�teed to exist in the array are all the elements
for the current paragraph; this is due to the fact that
HER��S Paige breaks apart large blocks of text into
smaller sections—but never in the ��ddle of a
paragraph.

Obtaining the point_starts of the current
paragraph

To obtain the first point_start of the current
paragraph, you can decrement the starts pointer until
the flags field contains N���PAR_B��. Here is an
example:

for (��)
{

if (starts �� flags & N���PAR_B��)
break;

--starts;
}

You can do the same thing to back up to start of the
previous line, ��th a slight alteration:

for (��)
{

--starts;
if (starts �� flags & N���LINE_B��)

break;
}

CAU��ON: Be sure there are truly previous point_start
elements before backing up the starts pointer. The
s��plest way to check this is to exa��ne the offset

field of the start; if it is zero, there are no
elements before it.

Example

if (starts �� offset �� 0)
/* We must not "back up" because starts is

the FIR�� ��AR�.*/

NO��: The "first start" does not necessarily mean the
start of the whole document, rather the start of the
current block of text. The first start however ��ll
a��ays be the beginning of a paragraph.

37.6 Page Rectangles

For purposes of custom pagination of paragraphs, you
probably need to compute the vertical location of page
boundaries.

CAU��ON: The information given here assumes that
repeat��g s�apes are e�ab�ed to achieve a multiple-page
effect. If you are using some other method for page
breaks, this information ��ght not apply (�ainly
because we do not know how you have ��plemented page
sizes and breaks).

The follo��ng is a list of very useful low-level
utility functions that you can use to find out about
the current "page" that a line ��ll display in:

��nclude "pgShapes.h"
pg_short_t pgGe��rapRect (paige_rec_ptr pg, long
r_nu�, co_ordinate_ptr offset_extra);

This function returns sufficient information to
construct the exact "page" rectangle for a given line
of text. (NO��: it is prototyped in pgShapes.h and is
intended to be called from low-level hooks such as
adjust_proc).

The r_num field must be the value in r_num from the
first point_start of the line. When this function
returns, offset_extra gets set to the amount to adjust

the original page rectangle to obtain the actual,
physical page location (remember we are dealing ��th
"repeating shapes", which means the pg_ref has only one
page shape which repeats; this function computes the
physical page position based on that information).

For purposes of obtaining only the vertical positions
of the page, the function result can be ignored.

Here is an example of obtaining the page rect for a
line of text in question (�hile in the adjust_proc):

rectangle page;
co_ordinate offset_adjust;

pgShapeBounds(pg �� wrap_area, &page);
/* start ��th actual page area */

pgGe��rapRect(pg, starts �� r_nu�, &offset_adjust);
pgOffsetRect(�page, offset_adjust.h,
offset_adjust.v);

/* We now have the "real" page area for the line
beginning at "starts" */

37.7 Page Break Characters

If your application ��plements page break characters,
you can deter��ne if the line has ter��nated ��th a
forced page break by exa��ning the ending point_start
flags field:

if (starts[nu��starts - 1].flags & BREAK_PAGE_B��)
�� line ends ��th forced page break char.

BREAK_PAGE_B�� only gets set if the line ter��nates
��th a physical page-break character (it does not get
set just because more lines won't fit on the page.

38 UNICODE SUPPORT

Using the appropriate HER��S Paige library (or
compiling HER��S Paige ��th #define UNICODE) ��ll help
you create a Unicode-aware application.

38.1 Compiler Settings

To compile an application using the HER��S Paige
Unicode library (or to build the HER��S Paige Unicode
library) you must provide the pre-definitions UNICODE
and _UNICODE. It is best to use the preprocessor
settings in your compiler for these definitions (not
CPUDEFS.H) because your ��ndows headers require these
definitions to resolve various macros.

38.2 Absolute Unicode

HER��S Paige Unicode expects absolute Unicode in every
respect. This includes anything whatsoever that has
previously been declared as a char or unsigned char.

For example, pgInsert() expects your character(s)
insertions to be ��de characters (16 bit). The font
name(s) in font_info are expected to be 16-bit
characters as well. If you are using the custom
control, all strings are assumed to be Unicode (the
"HER��S Paige" ��ndow class, the default font name,
etc.).

Text positions and offsets are also Unicode-aware; they
therefore must be considered character offsets and not
byte offsets. For example, if the insertion point
(caret) is sitting be��een characters 4 and 5,
pgGetSelection() ��ll return position 4 even though the
physical byte position is 8. S���larly, pgTextSize()
��ll return the total (Unicode) character size, not the
physical byte size. Every structure ��thin HER��S Paige
Unicode assumes Unicode-based text; this design has
been ��plemented for transparency and ease of
upgrading.

38.3 HER��S Paige Character Types

To support both Unicode and non-Unicode in a portable
fashion, a new generic type has been declared:

��fdef UNICODE
typedef unsigned short pg_char, *pg_char_ptr
#else
typedef unsigned pg_char, *pg_char_ptr

Most parameters in HER��S Paige API have changed from
pg_byte and pg_byte_ptr to pg_char and pg_char_ptr.

For historical purposes, the older type pg_byte is
still valid but it maps to pg_char.

If you need to declare a true byte (8-bit value),
HER��S Paige provides the follo��ng:

typedef unsigned char pg_bits8, *pg_bits8_ptr;

38.4 I/O and Text Files

Most of the file I/O supported by HER��S Paige Unicode
��ll be transparent to your application. If an older
HER��S Paige file is opened and/or if an HER��S Paige
Unicode-aware program opens a non-Unicode HER��S Paige
file, the text ��ll be translated appropriately ��th no
required intervention from your application.

Even if you are running the non-Unicode version of
HER��S Paige, reading HER��S Paige Unicode files ��ll
still be converted to 8-bit ASCII text.

38.5 ��port/Export

The HER��S Paige ��port/export extension ��ll translate
Unicode to ASCII or ASCII to Unicode, whichever is
appropriate. For example, when ��porting a text file
the ��porter checks for the existence of Unicode (or
not) and ��ll convert the characters as necessary
during the ��port. This ��ll work (�ore or less) even
if you are running the non-Unicode HER��S Paige library
- if Unicode text is being ��ported it ��ll be
converted to nonUnicode, 8-bit ASCII.

Exceptions

Exporting text and R��, however, ��ll export non-
Unicode ASCII by default. If you need to export Unicode
text, the follo��ng flag has been added to the export
definitions:

EXPOR��UNICODE_FLAG

After you have created the export object, set
EXPOR��UNICODE_FLAG in the export_bits member.

filter = (PaigeExportObject) new
PaigeR��ExportFilter();
filter �� feature_bits |= EXPOR��UNICODE_FLAG;

38.6 Unicode Support Utilities

NO��: Unless specified other��se, these support
utilities can be called even if the runt��e HER��S
Paige library is non-Unicode (version 2.0 or above).

pg_boolean pgIsPaigeUnicode (void);

Returns TRUE if the current runt��e HER��S Paige
library supports Unicode. This function works for all
2.0b1+ versions, ��th or ��thout Unicode support.

NO��: A "TRUE" merely means that the library — not
necessarily the OS — supports Unicode.

pg_boolean pgInsertBytes (pg_ref pg, const
pg_bits8_ptr data, long length, long position, short
insert��ode, short modifiers, short draw��ode);

This function is identical to pgInsert() except the
data to be inserted is considered to be 8-bit
characters. The purpose of this function is to provide
a way for a Unicode application to (still) be able to
insert 8-bit ASCII if necessary (calling pgInsert()
assumes Unicode characters).

Calling this function in a non-Unicode HER��S Paige
library ��ll do the same thing as pgInsert(). If called
in a Unicode HER��S Paige library, the bytes are
converted internally to 16-bit Unicode characters.

You can force text to be saved as Unicode even if you
are running in a non-Unicode environment. To do so, set
the extended attribute SAVE_AS_UNICODE using
pgSetAttributes2() before calling pgSaveDoc(). When
this attribute is set, the text is converted to Unicode
(16 bit characters).

NO��: While converting Roman or "English" characters
��ll generally convert to 16 bit characters properly,
complex double byte languages such as Japanese may not
convert correctly. To work around this problem you need
to supply the necessary character conversion functions
as described belo�.

38.8 Unicode Conversion Hooks

In certain cases, HER��S Paige is required to convert
Unicode to non-Unicode, or non-Unicode to Unicode. In
every case, one of the ��o low-level "hook" functions
are called as shown belo�.

Both of these functions are style_info hooks, i.e. they
apply to individual text formats. Initially, an
internal function is used as the default. For
bytes_to_unicode_proc the standard (default) function
merely converts 8 bit characters to 16 bit characters
and unicode_to_bytes_proc performs the reverse. For
special languages, scripts, etc. you would need to
provide your own conversion functions to replace the
defaults.

38.9 Non-Unicode to Unicode

long bytes_to_unicode_proc (pg_bits8_ptr
input_bytes, pg_short_t PG_FAR *output_chars,
font_info_ptr font, long input_byte_size);

Upon entry, input_bytes is a pointer to a buffer of
bytes (8 bit characters); input_byte_size defines the
number of bytes.

NO��: The input is considered a byte stream even if
they are logically "double byte characters” such as
Japanese text.

If output_chars is NULL, no conversion is to occur;
instead, this function should s��ply return the number
of characters that would result from a conversion to
Unicode.

If output_chars is not NULL, the converted characters
are to be output to this buffer; note that the actual
size of the output_chars buffer ��ll be large enough to
accommodate the conversion, assu��ng that each and
every byte in input_bytes ��ll be converted to a 16 bit
value.

The font parameter ��ll contain the current font of the
text (�hich typically ��ll contain language and script
information).

NO��: All the characters provided are guaranteed to be
rendered in this font, i.e. the conversion function
��ll never be called ��th "��xed" fonts.

FUNC��ON RESU��: The function should return the total
number of characters converted (that were placed into
output_chars) or the number of characters that would be
converted (if output_chars is NULL).

NO��: This is a character count, not a byte count.

38.10 Unicode to Non-Unicode

long unicode_to_bytes_proc (pg_short_t PG_FAR
*input_chars, pg_bits8_ptr output_bytes,
font_info_ptr font, long input_char_size);

Upon entry, input_chars is a pointer to a buffer of 16-
bit characters; the number of characters is given in
input_char_size.

NO��: input_char_size is a character count, not a byte
count.

The converted characters are to be output to the
output_bytes buffer.

NO��: The actual size of the output_bytes buffer ��ll
be large enough to accommodate the conversion, assu��ng
the possibility that all characters ��ght result in
double byte sizes (e.g., Japanese conversions, etc.).

This function only gets called if the characters in
input_chars are, in fact, Unicode; a call ��ll never
occur other��se.

The font parameter ��ll contain the current font of the
text (�hich typically ��ll contain language and script
information).

NO��: All the characters provided are guaranteed to be
rendered in this font, i.e. the conversion function
��ll never be called ��th "��xed" fonts.

FUNC��ON RESU��: The function should return the total
number of bytes converted (that were placed into
output_bytes.

NO��: This is a byte count, not necessarily a character
count.

38.11 Hook Names

The Unicode conversion hooks are members of
style_info.procs; their respective names are:

style_info.procs.bytes_to_unicode; �� Non-Unicode
to Unicode
style_info.procs.unicode_to_bytes; �� Unicode to
Non-Unicode

39 ERROR CODES

39.1 The #define error codes

The follo��ng error codes are defined in pgErrors.h.

NO��: These defines are not brought in by Paige.h: In
addition, they vary slightly from platform to platfor�.

000 No error

�� Mac

��ndows
NO_ERROR 0x0000
0x0000 �� No error

1xx Allocation Manager Errors

�� Mac

��ndows
NO����ORY_ERR Me��ullErr
0x0000 �� Insufficient memory
NO��ENOUGH_PURGED_ERR 0x0101
0x0101 �� Can not purge enough space
NO_PURGE_FILE_ERR 0x0102
0x0102 �� Purge file not available
LOCKED_BLOCK_ERR 0x0103

0x0103 �� Can not resize locked block
NIL_ADDRESS_ERR nilHandleErr
0x0104 �� Address is NIL (not valid)
BAD_ADDRESS_ERR 0x0104

0x0105 �� Address is bogus (not valid)
BAD_LINK_ERR 0x0105
0x0106 �� Something wrong ��th internal ref

2xx HER��S Paige memory_ref-specific errors

�� Mac

��ndows
CHECKSU��ERR 0x0200
0x0200 �� memory_ref checksum error

ACCESS_ERR 0x0201
0x0201 �� Access failed on memory_ref
BAD_REF_ERR 0x0202

0x0202 �� Bogus memory_ref
REF_DISPOSED_ERR 0x0203
0x0203 �� memory_ref has been disposed
FILE_PURGE_ERR 0x0204
0x0204 �� Error on file when purging
FILE_UNPURGE_ERR 0x0205
0x0205 �� Error reading purged file
RANGE_ERR 0x0206
0x0206 �� Access out of range
PURGED����ORY_ERR 0x0207

0x0207 �� Attempt to operate on a purged block
DEBUG_ZERO_ERR 0x0208
0x0208 �� Access is zero debug check
DEBUG_NZ_ERR 0x0209
0x0209 �� Access is non-zero debug check
NO_ERR_HANDLER_ERR 0x020A
0x020A �� No exception handler
PG_P��RING��OO_BIG_ERR 0x020B
0x020B �� Conversion to Pascal string error

3xx File i/o errors

�� Mac

��ndows
NO_HANDLER_ERR 0x0300
0x0300 �� Key handler not found
NO_SPACE_ERR fnOpnErr
0x0301 �� File has insufficient space
NO��OPEN_ERR fnOpnErr
0x0302 �� Requested file not open
FILE_LOCK_ERR fLckdErr

0x0303 �� Disc write-protected
WR���_PRO��C��ERR wPrErr
0x0304 �� Medium write-protected
ACCESS_DENIED_ERR per��rr
0x0305 �� Access per��ssion denied
EOF_ERR eofErr
0x0305 �� Attempt to go past end of file
IO_ERR ioErr
0x0306 �� Hard input-output error
BAD��YPE_ERR 0x0301
0x0308 �� File of inappropriate type
UNICODE_ERR 0x0309

0x0309 �� File is Unicode, platform can't handle
NO_FILE_ERR 0x03FE
0x03FF �� File not found
SO���EOF_ERR 0x03FF
0x03FF �� Logical end-of-file "error" abort

4xx Runt��e debugging errors (not Allocation
Manager related)

LOCKED_PG_ERROR 0x0400 �� Attempt to
change a locked pg_ref
ILLEGAL_RE_EN��R_ERROR 0x0401 �� Illegal re-entry
BAD_PARA��ERROR 0x0402 �� Bad
parameter in function
GLOBALS�����ATCH_ERROR 0x0403 �� Globals in doc
don't match pg_globals
DUP_KEY_HANDLER_ERROR 0x0404 �� pgWrite or pgRead
key that already exists
BAD_REFCON_ID_ERROR 0x0405 �� Bad refCon
number of exclusion

��RUC��IN��GR��Y_ERR 0x0406 �� Style structures
bad
USER_BREAK_ERR 0x0407 �� User-
invoked debug break
CAR���SYNC_ERR 0x0408 �� Caret and
caret bit out of synch

